Skip to main content

Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Increase in agriculture crop yields is needed to feed the ever-growing human population. But, the biotic and abiotic stresses are major constraints for plant growth, crop yield, food quality, and global food security. Different pathogens, weeds, and insects collectively contribute to biotic stress. Biotic stress causes adverse impacts on plants, including hormonal and nutritional imbalance, physiological disorders, susceptibility to diseases, etc., and results in reduced economic yield. The application of plant growth-promoting rhizobacteria (PGPR) offers a cost-effective and eco-friendly mechanism for protecting plants against the stress conditions. These microbial populations in the rhizosphere may benefit the plant by increased recycling, solubilization, and uptake of mineral nutrients; by synthesis of vitamins, amino acids, auxins, and gibberellins; and by antagonism with potential plant pathogens. Certain PGPR strains also protect the plants against pathogens through a mechanism associated with induced systemic resistance (ISR) or systemic acquired resistance (SAR). Recent progress in our understanding on the diversity of rhizobacteria in the rhizosphere, their colonization ability, and their mechanism of action in amelioration of biotic stress will facilitate their application as a reliable component in the management of a sustainable agricultural system. In this chapter, the effects of rhizobacteria on plant susceptibility/resistance to potential deleterious organisms, including root and shoot pathogens, pathogens, weeds, and phytophagous insects, will be discussed. The application of these rhizobacteria as biofertilizers and biopesticides may become a feasible and potential technology in the future to feed the global population with reduced impact on environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aetiba JP, Osekre EA (2015) Field evaluation of Levo botanical insecticide for the management of insect pests of eggplant (Solanum melongena L.). Am J Expl Agri 8(1):147–153

    Google Scholar 

  • Agarry OO, Akinyosoye FA, Adetuyi FC (2005) Antagonistic properties of microorganisms associated with cassava (Manihot esculenta, Crantz) products. Afr J Biotechnol 4(7):627–632

    Article  Google Scholar 

  • Agarwal P, Agarwal PK (2016) Jatropha curcas pathogenesis-related-10a protein: a jack of many trades via cytokinin signaling. Clon Transgen 5(2):1–5. https://doi.org/10.4172/2168-9849.1000152

    Article  Google Scholar 

  • Agler M, Ruhe J, Kroll S, Morhenn A, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1(3):39–54

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97

    Chapter  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 99:7327–7331

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper no. 12-03. FAO, Rome

    Google Scholar 

  • Alvindia DG, Natsuaki KT (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot 28(3):236–242

    Article  Google Scholar 

  • Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of coexisting on Lemna pauscicostates. Pestic Biochem Physiol 49:37–52

    Article  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53(6):412–428. https://doi.org/10.1111/j.1744-7909.2011.01043.x

    Article  CAS  PubMed  Google Scholar 

  • Antoniw JF, Ritter CE, Pierpoint WS, van Loon LC (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47:79–87

    Article  CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160. https://doi.org/10.1111/j.1365-3040.2009.01940.x

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983. https://doi.org/10.1038/415977a

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea by Pseudomonas aeruginosa 7NSK2: the role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156. https://doi.org/10.1094/MPMI.2002.15.11.1147

    Article  CAS  PubMed  Google Scholar 

  • Ayres PG, Press MC, Spencer-Phillips PT (1996) Effects of pathogens and parasitic plants on source-sink relationships. Photoassimilate distribution in plants and crops. Malcolm Colin Press, Sheffield, pp 479–499

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6(6):457–464

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar AA, Sezen K, Demirbağ Z, Nalçacioğlu R (2011) The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62:647–653. https://doi.org/10.1007/s13213-011-0301-y

    Article  CAS  Google Scholar 

  • Bajaj Y (1970) Effect of gamma-irradiation on growth, RNA, protein, and nitrogen contents of bean callus cultures. Ann Bot 34(5):1089–1096

    Article  CAS  Google Scholar 

  • Baldani VD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380–390

    Article  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  • Barral DHP, Clark JA (1991) Proteins arising during the late stages of embryogenesis in Pisum sativum. Planta 184:14–23

    Google Scholar 

  • Barreto MR, Guimaraes CT, Teixeira FF, Paiva E, Valicente FH (2005) Effect of Baculovirus spodoptera isolates in Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) larvae and their characterization by RAPD. Neotropical Entomol 34(1):67–75

    Article  Google Scholar 

  • Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: Is it different for Africa? Food Policy 33(4):287–298

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148–154

    PubMed  PubMed Central  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. https://doi.org/10.1023/A:1026290508166

    Article  CAS  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283. https://doi.org/10.1146/annurev-micro-092611-150107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243(2):467–472

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaha D, Combaret CP, Mirza MS, Loccoz YM (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase encoding gene acdS in phytobene Wcial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Boets A, Arnaut G, Van Rie J, Damme N (2004) Toxins United States Patent No. 6, 706, 860

    Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in the soil. Annu Rev Phytopathol 45:153–172. https://doi.org/10.1146/annurev.phyto.45.062806.094354

    Article  CAS  PubMed  Google Scholar 

  • Bowen D (1995) Characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Ph.D. thesis, University of Wisconsin, Madison

    Google Scholar 

  • Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, Ffrench-Constant RH (2000) Secreted proteases from Photorhabdus luminescens: Separation of the extracellular proteases from the insecticidal tc toxin complexes. Insect Biochem Mol Biol 30:69–74. https://doi.org/10.1016/S0965-1748(99)00098-3

    Article  CAS  PubMed  Google Scholar 

  • Boyetchko S, Rosskopf E (2006) Strategies for developing bioherbicides for sustainable weed management. In: Singh HP, Batish DR, Kohli RK (eds) Handbook for sustainable weed management. Haworth Press, Inc, New York

    Google Scholar 

  • Boyette CD, Hoagland RE (2013a) Bioherbicidal potential of a strain of Xanthomonas spp. for control of common Cocklebur (Xanthium strumarium). Biocontrol Sci Tech 23:183–196

    Article  Google Scholar 

  • Boyette CD, Hoagland RE (2013b) Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas campestris spp. for control of common Cocklebur (Xanthium strumarium). J Exper Biol Agri Sci 1:209–216

    Google Scholar 

  • Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Tech 25:229–237

    Article  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416. https://doi.org/10.1146/annurev.phyto.44.070505.143440

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-the R, Munch PC, Weiman A, Droge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403. https://doi.org/10.1016/j.chom.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate used in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36(6):889–901

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema, and their bacterial symbionts - lethal pathogens of insect. Nematology 2:31–42

    Article  Google Scholar 

  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7(8):e1002130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2011) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9

    Article  PubMed  Google Scholar 

  • Canova SP, Petta T, Reyes LF, Zucchi TD, Moraes LA, Melo IS (2010) Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World J Microbiol Biotechnol 26(12):2241–2247

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8(7):e68555. https://doi.org/10.1371/journal.pone.0068555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28(9):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation, and use of biopesticides for integrated pest management. Phil Trans R Soc B Biol Sci 366(1573):1987–1998

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. https://doi.org/10.1371/journal.pone.0055731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JW, Bell JR, Burgin LE, Reynolds DR, Pettersson LB, Hill JK, Bonsall MB, Thomas JA (2012) Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc Natl Acad Sci U S A 109(37):14924–14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014. https://doi.org/10.1038/nbt1325

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Kidd BN, Carvalhais LC, Schenk PM (2014) Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signal Behav 9:e977710. https://doi.org/10.4161/15592324.2014.977710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH (2008) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SR, Sindhu SS (2015) Suppression of Rhizoctonia solani root rot disease of clusterbean (Cyamopsis tetragonoloba) and plant growth promotion by rhizosphere bacteria. Plant Pathol J 14:48–57

    Article  CAS  Google Scholar 

  • Choudhary SR, Sindhu SS (2016) Growth stimulation of cluster bean (Cyamopsis tetragonoloba) by coinoculation with rhizosphere bacteria and Rhizobium. Legum Res 39(6):1003–1012

    Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1-2):101–115

    Article  CAS  Google Scholar 

  • Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinton A, Rumbaugh KP (2016) Interspecies and interkingdom signaling via quorum signals. Israel J Chem 56(5):265–272

    Article  CAS  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech, pp 21–24

    Google Scholar 

  • Corthals G, Gygi S, Aebersold R, Patterson S (2000) Identification of proteins by mass spectrometry. In: Proteome research: two-dimensional gel electrophoresis and identification methods. Springer, Berlin, pp 197–231

    Chapter  Google Scholar 

  • Crowell DN, John ME, Russell D, Amasino RM (1992) Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol Biol 18:459–466

    Article  CAS  PubMed  Google Scholar 

  • Daigle DJ, Connick JWJ, Boyetchko SM (2002) Formulating a weed suppressive bacterium in ‘pesta’. Weed Technol 16:407–413

    Article  Google Scholar 

  • Darby C, Cosma CL, Thomas JH (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:202–207. https://doi.org/10.1073/pnas.96.26.15202

    Article  Google Scholar 

  • Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59(6):1305–1313

    Article  CAS  PubMed  Google Scholar 

  • de Barjac H, Lemille F (1970) Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J Invertebr Pathol 15:139–140

    Article  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath belowground defense strategies in plants. Trends Plant Sci 20(2):91–101

    Article  PubMed  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433. https://doi.org/10.1146/annurev.genet.37.110801.143042

    Article  CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJM, Dickman R, Kahmann JE (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehgahi R, Zakaria L, Joniyas A, Subramaniam S (2014) Fusarium proliferatum culture filtrate sensitivity of Dendrobium sonia-28‘s PLBs derived regenerated plantlets. Malay J Microbiol 10(4):241–248

    Google Scholar 

  • Dehgahi R, Subramaniam S, Zakaria L, Joniyas A, Firouzjahi FB, Haghnama K, Razinataj M (2015a) Review of research on fungal pathogen attack and plant defense mechanism against the pathogen. Int Sci Res Agric Sci 2(8):197–208

    Google Scholar 

  • Dehgahi R, Zakaria L, Mohamad A, Joniyas A, Subramaniam S (2015b) Effects of fusaric acid treatment on the protocorm-like bodies of Dendrobium sonia-28. Protoplasma 15:1–7

    Google Scholar 

  • Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37(1):68–74

    Article  Google Scholar 

  • Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X (2011) Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 85(3):175–182

    Article  CAS  PubMed  Google Scholar 

  • Devi K, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Article  CAS  PubMed  Google Scholar 

  • Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187

    Article  CAS  Google Scholar 

  • Dey C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366(1-2):453–466

    Article  CAS  Google Scholar 

  • Dixon R, Cheng Q, Shen GF, Day A, Day MD (1997) nif genes and expression in chloroplasts: Prospects and problems. Plant Soil 194:193–203

    Article  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dohroo A, Sharma DR (2012) Role of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their helper bacteria on growth parameters and root rot of apple. World J Sci Tech 2(12):35–38

    Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552. https://doi.org/10.1016/j.pbi.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  • Donnelly J (2002) Great Irish potato famine. The History Press, Stroud

    Google Scholar 

  • Doornbos RF, van Loon LC (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243. https://doi.org/10.1007/s13593-011-0028-y

    Article  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RK, Tripathi V, Dubey PK, Singh HB, Abhilash PC (2016) Exploring rhizospheric interactions for agricultural sustainability: the need for integrative research on multi-trophic interactions. J Clean Prod 115:362–365

    Article  CAS  Google Scholar 

  • Duke SO, Abbas HK, Boyette CD, Gohbara M (1991) Microbial compounds with the potential for herbicide use. In: Proceeding brighten crop protection conference weeds, Brighton, UK, pp 155–164

    Google Scholar 

  • Duke SO, Evidence A, Fiore M, Rimando AM, Vurro M, Chistiansen N, Looser R, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem Physiol 100:41–50

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9

    Article  CAS  Google Scholar 

  • El-Borollosy AM, Oraby MM (2012) Induced systemic resistance against Cucumber mosaic cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Ann Agric Sci 57:91–97

    Article  Google Scholar 

  • Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40

    Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estruch JJ, Schell J, Spena A (1991) The protein encoded by the rolB plant oncogene hydrolyzes indole glucosides. EMBO J 10:3125–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evers D, Bonnechère S, Hoffmann L, Hausman JF (2007) Physiological aspects of abiotic stress response in potato. Belg J Bot 14:141–150

    Google Scholar 

  • Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73(3):956–961

    Article  CAS  PubMed  Google Scholar 

  • FAO (2012). http://www.fao.org/news/story/en/item/131114/icode/

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476

    Article  PubMed  CAS  Google Scholar 

  • Ferguson CM, Barton DM, Harper LA, Swaminathan J, Van Koten C, Hurst MRH (2012) Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protect 65:166–173

    Google Scholar 

  • Ferreira MI, Reinhardt CF (2016) Allelopathic weed suppression in agroecosystems: a review of theories and practices. Afr J Agric Res 11(6):450–459

    Article  Google Scholar 

  • Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:54–62

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4(6):220–226

    Article  CAS  PubMed  Google Scholar 

  • Fox AR, Soto G, Valverde C, Russo D, Lagares A, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instructor:1–12. https://doi.org/10.1094/PHI-I-2008-0226-01

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gealy DR, Gurusiddah S, Ogg AGJ, Kennedy AC (1996) Metabolites from Pseudomonas fluorescens strain D7 inhibits downy brome (Bromus tectorum) seedling growth. Weed Technol 10:282–287

    Article  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086. https://doi.org/10.1046/j.1365-2672.2002.01658.x

    Article  CAS  PubMed  Google Scholar 

  • Ghazalibigla H, Hampton JG, de Jong EVZ, Holyoake A (2016) Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol Control 92:195–201

    Article  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata lectin receptor kinase 1 suppresses the insect-mediated inhibition of induced defence responses during Menduca sexta herbivory. Plant Cell 23:3512–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanelli J, Owens LD, Mudd SH (1973) β-cystathionase. In vivo inactivation by rhizobitoxins and role of the enzyme in methionine biosynthesis in corn seedlings. Plant Physiol 51:492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glare TR, O’callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378. https://doi.org/10.1016/S0734-9750(97)00004-9

    Article  CAS  PubMed  Google Scholar 

  • Gnanavel I (2015) Eco-friendly weed control options for sustainable agriculture. Sci Int 3:37–47

    Article  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19

    Google Scholar 

  • Grace JK, Ewart D (1996) Recombinant cells of Pseudomonas fluorescens: a highly palatable encapsulation for delivery of genetically engineered toxins to subterranean termite (Isoptera: Rhinotermitidae). Lett Appl Microbiol 23:183–186

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30(3):369–378. https://doi.org/10.1016/S0038-0717(97)00124-7

    Article  CAS  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120

    CAS  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Gupta S, Meena MK, Datta S (2014) Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phosphate solubilization and IAA production. Int J Curr Microbiol App Sci 3:1082–1090

    Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773

    Article  CAS  Google Scholar 

  • Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17(5):603–616. https://doi.org/10.1016/j.chom.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  • Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889

    Google Scholar 

  • Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S (2007) Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant-Microbe Interact 20:1346–1352. https://doi.org/10.1094/MPMI-20-11-1346

    Article  CAS  PubMed  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Article  Google Scholar 

  • Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659–667

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2011) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444. https://doi.org/10.1093/jxb/err430

    Article  CAS  Google Scholar 

  • Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A 111:404–413

    Article  CAS  Google Scholar 

  • He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73(1):168–178

    Article  CAS  PubMed  Google Scholar 

  • Hernández MI, Chailloux M (2004) Las micorrizas arbusculares y las bacterias rizosfericas como alternative a la nutricion mineral del tomate. Cultivos Tropicales 25(2):5–13

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hoshino T (2011) Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91:1463–1475. https://doi.org/10.1007/s00253-011-3468-z

    Article  CAS  PubMed  Google Scholar 

  • Howe GA (2004) Jasmonates. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht/Boston/London, pp 610–634

    Google Scholar 

  • Huang ZY, Bonsall RF, Mavrodi DV, Weller DM, Thomashow LS (2004) Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Yang M, Zhang X (2016) The function of small RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327

    Article  CAS  PubMed  Google Scholar 

  • Hurst MRH, Becher SA, Young SD, Nelson TL, Glare TR (2011) Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Int J Syst Evol Microbiol 61:844–849. https://doi.org/10.1099/ijs.0.024406-0

    Article  CAS  PubMed  Google Scholar 

  • Ibekwe AM, Kennedy AC, Stubbs TL (2010) An assessment of environmental conditions for control of downy brome by Pseudomonas fluorescens D7. Int J Environ Technol Manag 12:27–46

    Article  CAS  Google Scholar 

  • Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological Control of Annual Bluegrass (Poa annua L.) with a Japanese Isolate of Xanthomonas campestris pv.poae (JT-P482). Biol Control 8:7–14

    Article  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360. https://doi.org/10.3389/fmicb.2015.01360

    Article  PubMed  PubMed Central  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109. https://doi.org/10.1046/j.1365-313X.1995.08010097.x

    Article  CAS  PubMed  Google Scholar 

  • Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept Ltd., Andover, pp 191–198

    Google Scholar 

  • Jafri RH, Ahmad M, Idrees K (1976) Microsporidian infection in the workers of termite, Microcerotermes championi. Pak J Zool 8:234–236

    Google Scholar 

  • Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wang X, Xiao C, Wang W, Zhao X, Sui J, Sa R, Guo TL, Liu X (2015) Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 31:1605–1618. https://doi.org/10.1007/s11274-015-1912-4

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Zhou B, Zhu X, Gao Z, Liang Y (2013) Fusaric acid induction of programmed cell death modulated through nitric oxide signaling in tobacco suspension cells. Planta 238(4):727–737

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Booth C (1983) Plant pathologist’s pocket book, 2nd edn. Commonwealth Agricultural Bureaux, Surrey

    Google Scholar 

  • Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and above-ground insect herbivory. New Phytol 210:413–418. https://doi.org/10.1111/nph.13807

    Article  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant-Microbe Interact 24:352–358. https://doi.org/10.1094/MPMI-09-10-0208

    Article  CAS  PubMed  Google Scholar 

  • Juan Y, Wei W, Peng Y, Bu T, Zheng Y, Li-hui Z, Jin-gao D (2015) Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation. J Integr Agric 14:1348–1355

    Article  CAS  Google Scholar 

  • Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Clim Chang Environ Sustain 1(1):11–19

    Article  Google Scholar 

  • Kan J, Fang R, Jia Y (2017) Interkingdom signaling in plant-microbe interactions. Sci China Life Sci 60(8):785–796

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Kataryan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetyl phloroglucinol. Dokl Akad Nauk Armyan SSR 63:109–112

    CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: the importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13. https://doi.org/10.1094/MPMI-5-004

    Article  CAS  Google Scholar 

  • Kennedy AC, Elliott LF, Young FL, Douglas CL (1991) Rhizobacteria suppressive to the weed downy brome. Am J Soil Sci Soc 55:722–727

    Article  Google Scholar 

  • Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797

    Article  CAS  Google Scholar 

  • Kern MF, Maraschin SDF, Endt DV, Schrank A, Vainstein MA, Pasquali G (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160:1933–1946

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. https://doi.org/10.1146/annurev.arplant.53.100301.135207

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting bacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khan KI, Fazal QA, Jafri RH, Ahmad MU (1977) Susceptibility of various species of termites to a pathogen, Serratia marcescens. Pak J Sci Res 29:46–47

    Google Scholar 

  • Khan KI, Jafri RH, Ahmad M (1985) The pathogenicity and development of Bacillus thuringiensis in termites. Pak J Zool 17:201–209

    Google Scholar 

  • Khan KI, Jafri RH, Ahmad M, Khan KMS (1992) The pathogenicity of Pseudomonas aeruginosa against termites. Pak J Zool 24:243–245

    Google Scholar 

  • Khandelwal A (2016) Evaluation of the herbicidal potential of rhizosphere bacteria against bathu (Chenopodium album) and piazi (Asphodelus tenuifolius) weeds. Ph. D. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

    Google Scholar 

  • Khattak SU, Iqbal Z, Lutfullah G, Bacha N, Khan AA, Saeed M, Ali M (2014) Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pak J Weed Sci Res 20:293–303

    Google Scholar 

  • Kim SJ, Kremer RJ (2005) Scanning and transmission electron microscopy of root colonization of morning glory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis 39:117–124

    Google Scholar 

  • Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS III, Ryu C (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555. https://doi.org/10.1128/AEM.01867-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant-Microbe Interact 12:720–727

    Article  CAS  PubMed  Google Scholar 

  • Kremer R (2006) Deleterious rhizobacteria. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht

    Google Scholar 

  • Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609

    Article  Google Scholar 

  • Krishna V, Kumar KG, Pradeepa K, Kumar S, Kumar RS (2013) Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micro propagated clones. Indian J Exp Biol 51:531–542

    PubMed  Google Scholar 

  • Kuc J (1982) Induced immunity to plant diseases. Bioscience 32:854–860

    Article  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul 36(3):608–617. https://doi.org/10.1007/s00344-016-9663-5

    Article  CAS  Google Scholar 

  • Kume T, Matsuda T (1995) Changes in structural and antigenic properties of proteins by radiation. Radiat Phys Chem 46(2):225–231

    Article  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit fly Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294. https://doi.org/10.1007/s002840110219

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Goettel M (1995) Current developments in microbial control of insects, pests, and prospects for the early 21st century. Entomophaga 40:3–27. https://doi.org/10.1007/BF02372677

    Article  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmi V, Kumari S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119

    Article  Google Scholar 

  • Lal R (2001) Future climate change: implications for India summer monsoon and its variability. Curr Sci 81:1205–1207

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Lal R (2011) The new science of metagenomics: fourth domain of life. Indian J Microbiol 51(3):245–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Langham M, Glover K (2005) Effects of Wheat streak mosaic virus (genus: Tritimovirus; family: Potyviridae) on spring wheat. Phytopathology 95(6):556

    Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2009) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588. https://doi.org/10.1111/j.1469-8137.2009.03066.x

    Article  CAS  PubMed  Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larimer AL, Clay K, Bever JD (2014) Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95(4):1045–1054. https://doi.org/10.1890/13-0025.1

    Article  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. https://doi.org/10.1126/science.aaa8764

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Lee S, Ryu CM (2012) Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann Bot 110(2):281–290. https://doi.org/10.1093/aob/mcs055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K (2015) Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39(3):213–320

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehr P (2010) Biopesticides: the global market. Report code CHM029B, BCC Research

    Google Scholar 

  • Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65

    Article  CAS  Google Scholar 

  • Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636–642

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang Y’n, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil Soils 51:935–946. https://doi.org/10.1007/s00374-015-1038-8

    Article  CAS  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, Pée KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56(8):688–695

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954. https://doi.org/10.1111/j.1365-313X.2007.03191.x

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Z (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285. https://doi.org/10.1016/j.biocontrol.2009.02.007

    Article  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Drobv S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167(2):153–160

    Article  PubMed  Google Scholar 

  • Liu H, Ma Y, Chen N, Guo S, Liu H, Guo X, Chong K, Xu Y (2014a) Overexpression of stress-inducible OsBURP16, the beta-subunit of polygalacturonase 1, decreases pectin contents and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ 37:1144–1158

    Article  CAS  PubMed  Google Scholar 

  • Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014b) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang H, Xiong M, Li F, Li L, Wang G, Pan G (2017) Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature. Biol Fertil Soils 53:3–8. https://doi.org/10.1007/s00374-016-1159-8

    Article  CAS  Google Scholar 

  • Lo SC, Hipskind JD, Nicholson RL (1999) cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Mol Plant-Microbe Interact 12(6):479–489

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodrıguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  CAS  PubMed  Google Scholar 

  • Lowe-Power TM, Jacobs JM, Ailloud F, Fochs B, Prior P, Allen C (2016) Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. Mol Biol 7(3):e00656-16. https://doi.org/10.1128/mbio.00656-16

    Article  CAS  Google Scholar 

  • Lu J, Robert CA, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167(3):1100–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lydon J, Patterson CD (2001) Detection of tabtoxin-producing strains of Pseudomonas syringae by PCR. Lett Appl Microbiol 32(3):166–170

    Article  CAS  PubMed  Google Scholar 

  • Lysenko O, Kucera M (1971) Microorganisms as sources of new insecticidal chemicals; toxins. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic, London/New York, pp 205–227

    Google Scholar 

  • Mahadtanapuk S, Sanguansermsri M, Cutler RW, Sardsud V, Anuntalabhochai S (2007) Control of anthracnose caused by Colletotrichum musae on Curcuma alismatifolia Gagnep. using antagonistic Bacillus spp. Am J Agric Biol Sci 2(2):54–61

    Article  Google Scholar 

  • Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient availability and management in the rhizosphere by microorganisms. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 301–326

    Chapter  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Neuner G, Storey K (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94(2):77–99

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43(5):883–894. https://doi.org/10.1016/j.soilbio.2011.01.005

    Article  CAS  Google Scholar 

  • Martin PAW, Shropshire ADS, Gundersen-Rindal DE, Blackburn MB (2007) Chromobacterium subtsugae sp.nov. and use for control of insect pests. US Patent Application Publication, 2007/0172463 A1

    Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:177–188. https://doi.org/10.1007/s11274-016-2131-3

    Article  CAS  PubMed  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Roderiguez-Herva JJ, Ramos JL, Ramos-Gonzalez MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant-Microbe Interact 2:325–331

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41(5):574–583

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mazzola M, Stahlman PW, Leach JE (1995) Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil Biol Biochem 27:1271–1278

    Article  CAS  Google Scholar 

  • McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-Formyl-amino-oxy-vinyl glycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73(11):1853–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate solubilizing bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174. https://doi.org/10.1007/s00374-009-0421-8

    Article  CAS  Google Scholar 

  • Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T (2010) Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits, and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl 55:561–572

    Article  Google Scholar 

  • Mejri D, Gamalero E, SOUISSI T (2013) Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114:219–228

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Mendoza A, Leija A, Martinez-Romero E, Hernandez G, Mora J (1995) The enhancement of ammonium assimilation in Rhizobium elti prevents nodulation of Phaseolus vulgaris. Mol Plant-Microbe Interact 8:584–592

    Article  CAS  PubMed  Google Scholar 

  • Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant-Microbe Interact 11:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mendoza EKM, Violante HGM, Inocencio CM, Salcedo GO, Madrigal HC, Portugal VO, Pérez MVA (2012) Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res 6:1887–1892

    Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266. https://doi.org/10.1146/annurev-phyto-082712-102314

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Hanson LE, Douches D, Hao JJ (2013) Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials. Biol Control 67(3):373–379

    Article  Google Scholar 

  • Miller GA, Suzuki N, Ciftci-yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo) 123:1112–1118

    Article  CAS  Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084. https://doi.org/10.1007/s11738-013-1338-2

    Article  CAS  Google Scholar 

  • Mishra P, Bisht S, Mishra S, Selvakumar G, Bisht J, Gupta H (2012) Coinoculation of Rhizobiumleguminosarum-PR1 with a cold-tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35(2):243–256. https://doi.org/10.1080/01904167.2012.636127

    Article  CAS  Google Scholar 

  • Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469. https://doi.org/10.1071/FP02231

    Article  CAS  PubMed  Google Scholar 

  • Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta 193:470–472

    Article  CAS  PubMed  Google Scholar 

  • Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069. https://doi.org/10.1128/AEM.67.5.2062-2069.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Muratoglu H, Kati H, Demibag Z (2009) High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). Afr J Biotechnol 8:7111–7115

    Google Scholar 

  • Murkute A, Sharma S, Singh S (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Article  Google Scholar 

  • Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8(11):e1003026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156

    Article  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Nishino T, Murao S, Wada H (1984) Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin. J Biochem 95:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki H, Nakashima K, Ishida C, Kawamura T, Matsuda K (2007) Cloning, functional characterization, and mode of action of a novel insecticidal poreforming toxin, sphaericolysin, produced by Bacillus sphaericus. Appl Environ Microbiol 73:3404–3411. https://doi.org/10.1128/AEM.00021-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in A. thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, Zhao H (2016) Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem Biophys Res Commun 469:120–125

    Article  CAS  PubMed  Google Scholar 

  • Norman MA, Patten KD, Gurusiddaiah S (1994) Evaluation of a phytotoxin(s) from Pseudomonas syringae for weed control in cranberries. Hortic Sci 29:1475–1477

    CAS  Google Scholar 

  • Nurnberger T, Kemmerling B (2009) Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. In: Parker J (ed) Molecular aspects of plant disease resistance, Annual plant reviews, 34. Wiley, Oxford, pp 16–47

    Google Scholar 

  • Okubara PA, Kang JH, Howe GA (2016) Belowground signaling and defence in host–Pythium interactions. In: Belowground defence strategies in plants. Springer, Cham, pp 171–193

    Chapter  Google Scholar 

  • Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 4:404–419

    Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crop Res 89:263–280

    Article  Google Scholar 

  • Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses. In: Abdurakhmonov IY (ed) Plant genomics. https://doi.org/10.5772/64351

    Google Scholar 

  • Ortiz-Marquez JCF, Do Nascimento M, Curatti L (2014) Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 23:154–164

    Article  CAS  PubMed  Google Scholar 

  • Osbrink LAW, Williams KS, Connick WJ Jr, Wright MS, Lax AR (2001) Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environ Entomol 76:443–448

    Article  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180

    Google Scholar 

  • Pandey S, Bhandari HS, Hardy B (2007) Economic costs of drought and rice farmers’ coping mechanisms: a cross-country comparative analysis. International Rice Research Institute, Metro Manila

    Google Scholar 

  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35(4):1159–1174. https://doi.org/10.1007/s00344-016-9600-7

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Poole A, Goodrich J, Ley R, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989. https://doi.org/10.1038/ismej.2014.196

    Article  CAS  PubMed  Google Scholar 

  • Park J, Radhakrishnan R, Kang S, Lee I (2015) IAA producing Enterobacter sp. I-3 as a potent bioherbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65(13):1879–1893

    Article  CAS  PubMed  Google Scholar 

  • Patil VS (2014) Isolation, characterization and identification of rhizospheric bacteria with the potential for biological control of Sida acuta. J Environ Res Dev 8:411–417

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878. https://doi.org/10.1038/nbt1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38(3):460–470

    Article  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120. https://doi.org/10.1016/S0092-8674(00)00213-0

    Article  CAS  PubMed  Google Scholar 

  • Phour M (2012) Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. M.Sc. thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

    Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Ton J, van Loon LC (2002) Cross-talk between plant defence signaling pathways: boost or burden? Agri Biotech Net 3:1–18

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2011) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, Boca Raton

    Book  Google Scholar 

  • Pontigo S, Godoy K, Jiménez H, Gutierrez-Moraga A, Mora MDLL, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si up- take and antioxidant performance in ryegrass plants. Front Plant Sci 8:642

    Article  PubMed  PubMed Central  Google Scholar 

  • Pshibytko N, Zenevich L, Kabashnikova L (2006) Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant Physiol 53(1):25–31

    Article  CAS  Google Scholar 

  • Quail JW, Ismail N, Pedras MSC, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr Sect C: Cryst Struct Commun 58:268–271

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2, 4- diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Weller AM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63(3):881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Brunijn I, Nybrow O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Raj SN, Chaluvaraju G, Amruthesh KN, Shetty HS, Reddy MS, Kloepper JW (2003) Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis 87(4):380–384

    Article  PubMed  Google Scholar 

  • Rakshiya YS, Verma MK, Sindhu SS (2016) Efficacy of antagonistic soil bacteria in the management of subterranean termites (Isoptera). Res Environ Life Sci 9:949–955

    Google Scholar 

  • Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381. https://doi.org/10.1111/j.1574-6941.2005.00052.x

    Article  CAS  PubMed  Google Scholar 

  • Ramzan M, Tabassum B, Nasir IA, Khan A, Tariq M, Awan MF, Shahid N, Rao AQ, Bhatti MU, Toufiq N, Husnain T (2016) Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnol Equipm 30(3):469–478

    CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68

    Article  CAS  PubMed  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158

    Article  CAS  PubMed  Google Scholar 

  • Rayapuram C, Baldwin IT (2007) Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 52:700–715. https://doi.org/10.1111/j.1365-313X.2007.03267.x

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016a) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:248–256

    Google Scholar 

  • Raza W, Yousaf S, Rajer FU (2016b) Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. Sci Lett 4(1):40–43

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436

    Article  CAS  PubMed  Google Scholar 

  • Rivers DB, Vann CN, Zimmack HL, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invertebr Pathol 58:444–447. https://doi.org/10.1016/0022-2011(91)90191-R

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Mittler R (2001) Inducible expression of bacterioopsin in transgenic tobacco and tomato plants. Plant Mol Biol 46:313–323

    Article  CAS  PubMed  Google Scholar 

  • Roberts T, Murrell KD, Marks S (1994) Economic losses caused by foodborne parasitic diseases. Parasitol Today 10(11):419–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrıguez H, Gonzalez T, Selman G (2001) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84(2):155–161

    Article  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. https://doi.org/10.1104/pp.108.127613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiu L, Delrio G, Ellar DJ, Floris I, Paglietti B, Rubino S, Satta A (2006) Lethal and sub-lethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomologia Experimentalis et Applicata 118:137–144. https://doi.org/10.1111/j.1570-7458.2006.00370.x

    Article  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. https://doi.org/10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Salam A (2008) Production, prices, and emerging challenges in the Pakistan cotton sector. Cotton-Textile-Apparel Sectors of Pakistan, p 22

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26

    Article  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Singh G, Kashyap PL, Singh NB (2011) Designing crop plants for biotic- stresses using a transgenic approach. Int J Plant Res 24:1–25

    Google Scholar 

  • Santoro MV, Bogino PC, Nocelli N, Cappellari LR, Giordano WF, Banchio E (2016) Analysis of plant growth promoting effects of Fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1085):1–1085)17

    Article  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172(2):261–269

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana CV, Rao PR (1994) 5-aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol Prog 10:451–459

    Article  CAS  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Springer, Berlin

    Book  Google Scholar 

  • Sayed MHE, Aziz ZKA, Abouzaid AM (2014) Efficacy of extracellular metabolite produced by Streptomyces levis strain LX-65 as a potential herbicidal agent. J Am Sci 10:169–180

    Google Scholar 

  • Schacht T, Unger C, Pich A, Wydra K (2011) Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiol Biochem 49:377–387

    Article  CAS  PubMed  Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  CAS  PubMed  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1, 3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011) Increase of the Bacillus thuringiensis secreted toxicity against lepidopteron larvae by homologous expression of the vip3LB gene during sporulation stage. Curr Microbiol 63:289–294

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Alun J, Morgan W (2006) Identification, typing and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907. https://doi.org/10.1128/AEM.00217-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282

    Article  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka E, WangPruski G, Faure D, Reiter B, Glick BR, Nowak J (2005) Burkholderia phytofirmans sp. Nov., a novel plant-associated bacterium with plant beneWcial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Sevim A, Demirbag Z, Demirturk I (2010) A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk J Agric For 34:333–342

    CAS  Google Scholar 

  • Sezen K, Demir I, Demirbag Z (2005) Investigations on bacteria as a potential biological control agent of summer chafer Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43:463–468

    CAS  PubMed  Google Scholar 

  • Sforza R, Jones W (2007) Potential for classical biocontrol of silverleaf nightshade in the Mediterranean Basin. EPPO Bull 37:156–162

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Sharifi R, Ryu CM (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, Alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front Microbiol 7:196):1–196)10

    Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Shigo AL, Gregory GF, Campana RJ, Dudzik KR, Zimel DM (1986) Patterns of starch reserves in healthy and diseased American elms. Can J For Res 16(2):204–210

    Article  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Shohael A, Ali M, Yu K, Hahn E, Islam R, Paek K (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in the bioreactor. Process Biochem 41(5):1179–1185

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (1985) Protoplast formation and regeneration in Rhizobium and Azospirrilum. Curr Sci 54:344–346

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1993) Broadening of host range infectivity in cowpea miscellany Rhizobium by protoplast fusion. Indian J Exp Biol 31:521–528

    Google Scholar 

  • Sindhu SS, Sehrawat A (2017) Rhizosphere microorganisms: application of plant beneficial microbes in biological control of weeds. In: Microorganisms for the green revolution. Springer, Singapore, pp 391–430

    Chapter  Google Scholar 

  • Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulations of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiswal PK (eds) Plant genetic engineering: volume 1. Application and limitations. Sci Tech Publishers, LCC, Houston, pp 199–228

    Google Scholar 

  • Sindhu SS, Jangu OP, Sivaramaiah N (2009a) Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In: Sayyed RZ, Patil AS (eds) Biotechnology emerging trends. Scientific Publishers, Jodhpur, pp 73–112

    Google Scholar 

  • Sindhu SS, Verma MK, Mor S (2009b) Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes and crop productivity. Nova Science Publishers, New York, pp 199–228

    Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizospheric bacteria for biological control of plant pathogens. Defense Life Sci J 1:135–148

    Article  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Khandelwal A (2017) Biological control of insect pests for sustainable agriculture. In: Adhya TK (ed) Advances in soil microbiology: recent trends and future prospects, microorganisms for sustainability. Springer Nature, Singapore Pte Ltd, pp 189–218

    Chapter  Google Scholar 

  • Sindhu SS, Khandelwal A, Phour M, Sehrawat A (2018) Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weeds management. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Vol 2; applications in crop production and protection. Springer Nature, Singapore Pte Ltd, pp 331–376

    Google Scholar 

  • Singer S (1996) The utility of morphological group II Bacillus. Adv Appl Microbiol 42:219–261

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2007a) Role of management practices on control of isoproturon resistant little seed conary grass (Phalaris minor) in India. Weed Technol 21:339–346

    Article  CAS  Google Scholar 

  • Singh Y (2007b) Isolation and identification of bacteria having pathogenic interactions with termites (Isoptera). M.Sc. thesis submitted to CCS Haryana Agricultural University, Hisar, p 104

    Google Scholar 

  • Singh VK, Upadhyay RS (2014) Fusaric acid-induced cell death and changes in the oxidative metabolism of Solanum lycopersicum L. Bot Stud 55(1):1–11

    Article  CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminum on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant-Microbe Interact 6:293–298

    Article  CAS  Google Scholar 

  • Soares WL, Porto MFS (2009) Estimating the social cost of pesticide use: an assessment from acute poisoning in Brazil. Ecol Econ 68:2721–2728

    Article  Google Scholar 

  • Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as an elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847. https://doi.org/10.1073/pnas.0708139104

    Article  PubMed  PubMed Central  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:1–660

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathol J 12(4):154–161. https://doi.org/10.3923/ppj.2013.154.161

    Article  CAS  Google Scholar 

  • Svábová L, Lebeda A, Kitner M, Sedlárová M, Petrivalsky M, Dostálová R, Griga M et al (2011) Comparison of the effects of Fusarium solani filtrates in vitro and in vivo on the morphological characteristics and peroxidase activity in pea cultivars with different susceptibility. J Plant Pathol 93(1):19–30

    Google Scholar 

  • Swarupa V, Ravishankar K, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239(4):735–751

    Article  CAS  PubMed  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact 21:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Tateno A (2000) Herbicidal composition for the control of annual bluegrass. U.S. Patent No 6162763A. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Tatum L (1971) The southern corn leaf blight epidemic. Science 171:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Templeton GE (1988) Biological control of weeds. Am J Altern Agric 3:69–72

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Penninckx IA, Cammue BP, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68. https://doi.org/10.1016/S0952-7915(00)00183-7

    Article  CAS  PubMed  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances the efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13(12):1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12(11):951–959

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser-induced breakdown spectroscopy, and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Soy K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udayashankar AC, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59(2):114–122

    Article  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Morillon GV (2015) Biocontrol of phytopathogens: antibiotic production as a mechanism of control, the battle against microbial pathogens. In: Mendez Vilas A (ed) Basic science, Technological advance and educational programs 1, pp 305–309

    Google Scholar 

  • Ulstrup JC, Figenschou KJ (1972) Frequency of hepatitis-B infections. Lancet 300(7785):1035

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM (2006) Root associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 269–316

    Chapter  Google Scholar 

  • van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12:245–264

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

    Article  CAS  PubMed  Google Scholar 

  • Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). Agric Food Chem 52(11):3385–3388

    Article  CAS  Google Scholar 

  • Vega FE, Kaya HK (2012) Insect pathology. Academic, New York

    Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  CAS  PubMed  Google Scholar 

  • Walters DR, Newton AC, Lyon GD (2005) Induced resistance: helping plants to help themselves. Biologist 52:28–33

    Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790. https://doi.org/10.1016/j.cub.2007.09.025

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang W, Wang C, Gu C, Niu D, Liu H, Wang Y, Guo J (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ling N, Dong X, Liu X, Shen Q, Guo S (2014) Effect of fusaric acid on the leaf physiology of cucumber seedlings. Eur J Plant Pathol 138(1):103–112

    Article  CAS  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418

    Article  CAS  PubMed  Google Scholar 

  • Ware GW, Whitacre DM (2004) An introduction to herbicides, 2nd edn

    Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath B, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:1743–1752. https://doi.org/10.1073/pnas.1203689109

    Article  Google Scholar 

  • Weissmann R, Uggla C, Gerhardson B (2003) Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biol Control 48:725–742

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Lynch JM (1986) The influence of the rhizosphere on crop productivity. In: Advances in microbial ecology. Springer, New York, pp 187–244

    Chapter  Google Scholar 

  • Wilkinson VM, Gould G (1996) Food irradiation: a reference guide. Woodhead Publishing in Science and Technology, Cambridge, p 180

    Google Scholar 

  • Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Chang PFL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101(9):1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Huang H (2014) Roles of small RNAs in plant disease resistance. J Integr Plant Biol 56:962–970

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Tang R, Zhu J, Liu H, Mueller-Roeber B, Xia H, Zhang H (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66(4):329–343

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Yang P, Sun ZX, Liu SY, Lu HX, Zhou Y, Sun M (2013) Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Prot 47:17–23

    Article  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51(2):93–101

    Article  CAS  Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324. https://doi.org/10.1111/j.1467-7652.2007.00243.x

    Article  CAS  PubMed  Google Scholar 

  • Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, Gross H (2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE∗ 1-1-14 is involved in pathogen suppression and root colonization. Mol Plant-Microbe Interact 28(7):800–810

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Wani PA, Khan MS (2012) Bioremediation: a natural method for the management of the polluted environment. In: Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 101–114

    Chapter  Google Scholar 

  • Zdor R, Alexander C, Kremer R (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299

    Article  CAS  Google Scholar 

  • Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broom rape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:487–497

    Article  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

  • Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 24(6):783

    Article  CAS  Google Scholar 

  • Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol 42(2):109–114

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  PubMed  Google Scholar 

  • Zidack NK, Quimby PC (2002) Formulation of bacteria for biological control using the stabilizing method. Biocontrol Sci Tech 12:67–74

    Article  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

  • Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:257–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, S.S., Sharma, R. (2019). Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_5

Download citation

Publish with us

Policies and ethics