Skip to main content

Abiotic Stress and Wheat Grain Quality: A Comprehensive Review

  • Chapter
  • First Online:

Abstract

Wheat is a major cereal crop and is grown in a wide range of agroecologies across the world. Abiotic stresses such as heat stress (HS), drought, waterlogging (WL), salinity, ultraviolet radiation B (UVR-B), ozone (O3), mineral deficiency (MD), and heavy metal toxicity (HMT) are the major constraints to wheat cultivation in its present form or in the future amplified version under changing global climate. These stresses alone or in combined form can pose a serious intimidation on the grain quality and crop production. Maintaining wheat grain quality (WGQ) under stressful conditions is decisive for end-use functional properties. This review is presented with investigations and the existing understanding of the impact of these stresses on WGQ parameters such as starch granule (SG) size and composition, protein content (PC), glutenin (Gt)/gliadin (Gl) ratio, insoluble protein polymers, and free amino acid (AA) content. In the end, the efficacy of crop models (CM) for prediction of adverse impact of these stresses on WGQ is discussed in brief. Altogether, this review could facilitate in escalating our predictive capability to design better adaptation strategies according to climate changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A:

albumins

AA:

amino acid

AGPase:

glucose-1-phosphate adenylyltransferase

AL:

amylose

AP:

amylopectin

AX:

arabinoxylans

Ca:

calcium

CM:

crop model

DF:

dietary fiber

Fe:

iron

G:

globulins

GBSS:

granule-bound starch synthase

GC:

glucan chain

GF:

grain filling

Gl:

gliadins

GPC:

grain protein content

Gt:

glutelins

HMT:

heavy metal toxicity

GS:

glutenin subunit

HMW:

high molecular weight

HS:

heat stress

K:

potassium

LC:

lipid content

LMW:

low molecular weight

MD:

mineral deficiency

Mg:

magnesium

Mn:

manganese

MW:

molecular weight

Na:

sodium

O3 :

ozone

P:

prolamins

PA:

phosphoric acid

PC:

protein content

RER:

rough endoplasmic reticulum

ROS:

reactive oxygen species

SBE:

starch-branching enzyme

SC:

starch content

Se:

selenium

SG:

starch granule

SS:

starch synthase

β-G:

β-glucans

SSS:

soluble starch synthase

TG:

triglyceride

TSS:

total soluble sugar

UVR-B:

ultraviolet radiation B

WGC:

wheat grain composition

WL:

waterlogging

Zn:

zinc

References

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. J Plant Growth Regul 35:81–91

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Al-Othman ZA, Ali R, Al-Othman AM, Ali J, Habila MA (2016) Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water resources. Arab J Chem 9:1555–1562

    Article  CAS  Google Scholar 

  • Altenbach SB, Kothari KM, Lieu D (2002) Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chem 79:279–285

    Article  CAS  Google Scholar 

  • Anderson D (2014) Endurance: Australian stories of drought. CSIRO Publishing, Collingwood

    Book  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Asseng S, Milroy SP, Poole ML (2008) Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment I. Yield potential and quality. Field Crops Res 105:97–106

    Article  Google Scholar 

  • Balla K, Rakszegi M, Li Z, Békés F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128

    Article  CAS  Google Scholar 

  • Beckles DM, Thitisaksakul M (2014) How environmental stress affects starch composition and functionality in cereal endosperm. Starch-Stärke 66:58–71

    Article  CAS  Google Scholar 

  • Bencze S, Veisz O, Bed Z (2004) Effects of high atmospheric CO2 and heat stress on phytomass, yield and grain quality of winter wheat. Cereal Res Commun 32:75–82

    Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Blumenthal CS, Barlow EWR, Wrigley CW (1993) Growth environment and wheat quality: the effect of heat stress on dough properties and gluten proteins. J Cereal Sci 18:3–21

    Article  CAS  Google Scholar 

  • Blumenthal C, Bekes F, Gras PW, Barlow EWR, Wrigley CW (1995) Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem 72:539–544

    CAS  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production. CABI, Wallingford, pp 115–138

    Chapter  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1→ 3, 1→ 4)-β-D-glucans as functional food ingredients. J Cereal Sci 42:1–3

    Article  CAS  Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet J, Meynard JM, Delecolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I Theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Article  Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Broberg MC, Feng Z, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality- a summary. Environ Pollut 197:203–213

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–7

    Article  CAS  Google Scholar 

  • Calderini DF, Lizana XC, Hess S, Jobet CR, Zúñiga JA (2008) Grain yield and quality of wheat under increased ultraviolet radiation (UV-B) at later stages of the crop cycle. J Agric Sci 146:57–64

    Article  Google Scholar 

  • Cheng FM, Zhong LJ, Zhao NC, Liu Y, Zhang GP (2005) Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul 46:87–95

    Article  CAS  Google Scholar 

  • Coles GD, Jamieson PD, Haslemore RM (1991) Effect of moisture stress on malting quality in Triumph barley. J Cereal Sci 14:161–177

    Article  Google Scholar 

  • Coles GD, Hartunian-Sowa SM, Jamieson PD, Hay AJ, Atwell WA, Fulcher RG (1997) Environmentally-induced variation in starch and non-starch polysaccharide content in wheat. J Cereal Sci 26:47–54

    Article  CAS  Google Scholar 

  • Corbellini M, Canevar MG, Mazza L, Ciaffi M, Lafiandra D, Borghi B (1997) Effect of the duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Aust J Plant Physiol 24:245–260

    CAS  Google Scholar 

  • Day L, Augustin MA, Batey IL, Wrigley CW (2006) Wheat-gluten uses and industry needs. Trends Food Sci Technol 17:82–90

    Article  CAS  Google Scholar 

  • De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found Sri Lanka 39:281–302

    Article  Google Scholar 

  • Dengate HN (1984) Swelling, pasting and gelling of wheat starch. In: Pomeranz Y (ed) Advances in cereal science and technology. American Association of Cereal Chemists, Saint Paul, pp 49–82

    Google Scholar 

  • Dubreil L, Meliande S, Chiron H, Compoint JP, Quillien L, Branlard G, Marion D (1998) Effect of puroindolines on the bread-making properties of wheat flour. Cereal Chem 75:222–229

    Article  CAS  Google Scholar 

  • Duke ER, Doehlert DC (1996) Effects of heat stress on enzyme activities and transcript levels in developing maize kernels grown in culture. Environ Exp Bot 36:199–208

    Article  CAS  Google Scholar 

  • Dupont FM, Altenbach SB (2003) Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 38:133–146

    Article  CAS  Google Scholar 

  • Ehdaie B, Waines JC (2001) Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat. Field Crops Res 73:47–61

    Article  Google Scholar 

  • Enghiad A, Ufer D, Countryman AM, Thilmany DD (2017) An overview of global wheat market fundamentals in an era of climate concerns. Int J Agron 2017:3931897

    Article  Google Scholar 

  • Fábián A, Jäger K, Rakszegi M, Barnabás B (2011) Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Rep 30:551–563

    Article  PubMed  CAS  Google Scholar 

  • Fan XM, Jiang D, Dai TB, Jing Q, Cao WX (2004) Effects of post-anthesis drought and waterlogging on the quality of grain formation in different wheat varieties. Acta Phytoecol Sin 28:680–685

    CAS  Google Scholar 

  • Fan X, Jiang D, Dai T, Jing Q, Cao W (2005) Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging. J Appl Ecol 16:1883–1888

    CAS  Google Scholar 

  • FAO (2012) Food security and environment. Available online at http://faostat.fao.org/site/377/default.aspx#ancor

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Feng ZZ, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Galantini JA, Landriscini MR, Iglesisias JO, Miglierina AM, Roesell RA (2000) The effects of crop rotation and fertilization on wheat productivity in the Pampean semiarid region of Argentina: 2 Nutrient balance, yield and grain quality. Soil Tillage Res 5:137–144

    Article  Google Scholar 

  • Gao W, Zheng Y, Slusser JR, Heisler GM, Grant RH, Xu J, He D (2004) Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment. Photochem Photobiol 80:127–131

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Lestache EL, Lopez-Bellido RJ, Lopez-Bellido L (2004) Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Res 85:213–236

    Article  Google Scholar 

  • Gianibelli MC, Larroque R, MacRitchie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    Article  CAS  Google Scholar 

  • Gooding MJ, Ellis RH, Shewry PR, Schofield JD (2003) Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J Cereal Sci 37:295–309

    Article  Google Scholar 

  • Graybosch RA, Peterson CJ, Baenziger PS, Shelton DR (1995) Environmental modification of hard red winter wheat flour protein composition. J Cereal Sci 22:45–51

    Article  CAS  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91

    Article  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Hakala K, Jauhiainen L, Hoskela T, Kayhko P, Vorne V (2002) Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. J Agron Crop Sci 188:8–18

    Article  Google Scholar 

  • Halford NG, Curtis TY, Muttucumaru N, Postles J, Elmore JS, Mottram DS (2012) The acrylamide problem: a plant and agronomic science issue. J Exp Bot 63:2841–2851

    Article  CAS  PubMed  Google Scholar 

  • Halford NG, Curtis TY, Chen Z, Huang J (2014) Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J Exp Bot 66:1145–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hesse H, Nikiforova V, Gakiére B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Zhang WH, Yamamoto M, Sato T, Kumagai T (2005) Changes in grain size and grain storage protein of rice (Oryza sativa L.) in response to elevated UV-B radiation under out-door conditions. J Radiat Res 46:143–149

    Article  PubMed  Google Scholar 

  • Hong BH, Rubenthaler GL, Allen RE (1989) Wheat pentosans cultivate variation and relationship to kernel hardness. Cereal Chem 66:369–373

    CAS  Google Scholar 

  • Houshmand S, Arzani A, Mirmohammadi-Maibody SAM (2014) Effects of salinity and drought stress on grain quality of durum wheat. Commun Soil Sci Plant Anal 45:297–308

    Article  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kotharia KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, DuPont FM (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • IPCC (2014) In: Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. IPCC, Geneva, p 151

    Google Scholar 

  • Jamieson PD, Semenov MA (2000) Modelling nitrogen uptake and redistribution in wheat. Field Crops Res 68:21–29

    Article  Google Scholar 

  • Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998) Sirius: a mechanistic model of wheat response to environmental variations. Eur J Agron 8:161–179

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 6:407–431

    Article  CAS  Google Scholar 

  • Jiang D, Fan X, Dai T, Cao W (2008) Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil 304:301–314

    Article  CAS  Google Scholar 

  • Jiang D, Yue H, Wollenweber B, Tan W, Mu H, Bo Y, Dai T, Jing Q, Cao W (2009) Effects of post-anthesis drought and waterlogging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in wheat grain. J Agro Crop Sci 195:89–97

    Article  CAS  Google Scholar 

  • Kahrizi S, Sedghi M (2013) Effect of salt stress on grain reserve composition in ten durum wheat cultivars. J Stress Physiol Biochem 9:113–121

    Google Scholar 

  • Kasarda DD (1989) Glutenin structure in relation to wheat quality. In: Pomeranz Y (ed) Wheat is unique. American Association of Cereal Chemists Inc, Saint Paul, pp 277–302

    Google Scholar 

  • Katerji N, vanHoorn JW, Fares C, Hamdy A, Mastrorilli M, Oweis T (2005) Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric Water Manag 75:85–91

    Article  Google Scholar 

  • Khan NA, Shamim M, Shambhoo P (2008) Biochemical changes in wheat plants in response to salinity. Int J Plant Sci 3:11–15

    CAS  Google Scholar 

  • Kim MJ, Yoon WJ, Kim SS (2016) Phytochemical compositions of immature wheat bran, and its antioxidant capacity, cell growth inhibition, and apoptosis induction through tumor suppressor gene. Molecules 21:1292

    Article  PubMed Central  CAS  Google Scholar 

  • Klikocka H, Cybulska M, Barczak B, Narolski B, Szostak B, Kobiałka A, Nowak A, Wójcik E (2016) The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ 62:230–236

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne MT, Elago O, Koen E (2009) The influence of temperature extremes on quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci 49:184–189

    CAS  Google Scholar 

  • Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, Lafiandra D, Masci S (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10:2359–2368

    Article  CAS  PubMed  Google Scholar 

  • Lásztity R (1999) Cereal chemistry. Akadémiai Kiadó, Budapest, pp 11–510

    Google Scholar 

  • Leterrier M, Holappa LD, Broglie KE, Beckles DM (2008) Cloning, characterization and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

    PubMed  PubMed Central  Google Scholar 

  • Li C, Cai J, Jiang D, Dai T, Cao W (2011) Effects of hardening by pre-anthesis waterlogging on grain yield and quality of post-anthesis waterlogged wheat (Triticum aestivum L. cv Yangmai 9). Acta Ecol Sin 31:1904–1910

    Google Scholar 

  • Li J, Yang L, Jin D, Nezames CD, Terzaghi W, Deng XW (2013) UV-B-induced photomorphogenesis in Arabidopsis. Protein Cell 4:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Meng J, Guo L, Jiang G (2016) Effects of ozone pollution on yield and quality of winter wheat under flixweed competition. Environ Exper Bot 129:77–84

    Article  CAS  Google Scholar 

  • Lidon FC (2012) Micronutrients’ accumulation in rice after supplemental UV-B irradiation. J Plant Inter 7:19–28

    CAS  Google Scholar 

  • Liu WX, Liu JW, Wu MZ, Li Y, Zhao Y, Li SR (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 82:343–347

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Guo W, Jiang Z, Pu H, Feng C, Zhu X, Peng Y, Kuang A, Little CR (2011) Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci 149:159–169

    Article  CAS  PubMed  Google Scholar 

  • Lizana XC, Hess S, Calderini DF (2009) Crop phenology modifies wheat responses to increased UV-B radiation. Agric For Meteorol 149:1964–1974

    Article  Google Scholar 

  • Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Wang C, Guo T, Xie Y, Feng W, Li S (2014) Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments. Starch-Stärke 66:419–428

    Article  CAS  Google Scholar 

  • Lyons G, Stangoulis J, Graham R (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16:45–60

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    Article  CAS  Google Scholar 

  • Madronich SRL, McKenzie LO, Bjö RN, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B Biol 46:5–19

    Article  CAS  Google Scholar 

  • Marashi SK, Chinchanikar GS (2010) Effect of waterlogging on yield and yield components of wheat (Triticum aestivum L.). Int J Appl Agric Res 5:561–567

    Google Scholar 

  • Martre P, Jamieson PD, Semenov MA, Zyskowski RF, Porter JR, Triboi E (2006) Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur J Agron 25:138–154

    Article  CAS  Google Scholar 

  • Mikkelsena BL, Jørgensenb RB, Lyngkjær MF (2015) Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol 64:319–327

    Article  CAS  Google Scholar 

  • Mohamed AR, Ahmed KS (2006) Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem Toxicol 44:1273–1278

    Article  CAS  Google Scholar 

  • Morell MK, Li Z, Regina A, Rahman S, D’Hulst C, Ball S (2007) Control of starch biosynthesis in vascular plants and algae. In: Plaxton WC, Mc Manus MT (eds) Annual plant reviews. Blackwell Publishing Ltd, Oxford, pp 258–289

    Google Scholar 

  • Murzaeva SV (2004) Effect of heavy metal on wheat seedlings: activation of antioxidant enzymes. Appl Biochem Microbiol 40:98–103

    Article  CAS  Google Scholar 

  • Nebesny E, Rosicka J, Tkaczyk M (2005) Influence of selected parameters of starch gelatinization and hydrolysis on stability of amylose–lipid complexes. Starch-Starke 57:325–331

    Article  CAS  Google Scholar 

  • Nuttall JG, O'Leary GJ, Panozzo JF, Walker CK, Barlow KM, Fitzgerald GJ (2017) Models of grain quality in wheat- a review. Field Crops Res 202:136–145

    Article  Google Scholar 

  • Nyström L, Lampi AM, Anderson AAM, Kamal-Eldin A, Gebruers K, Courtin CM, Delcour JA, Li L, Ward JL, Fras A, Boros D, Rakszegi M, Bedő Z, Shewry PR, Piironen V (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9758–9766

    Article  PubMed  CAS  Google Scholar 

  • Ohdan K, Sawada T, Nakamura Y (2011) Effect of temperature on starch branching enzyme properties of rice. J Appl Glycosci 58:19–26

    Article  CAS  Google Scholar 

  • Olgun M, Kumlay AM, Adiguze MC, Caglar A (2008) The effect of waterlogging in wheat (T. aestivum L.). Acta Agric Scand B Soil Plant Sci 58:193–198

    CAS  Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernel. Carnegie Inst Washington 84:1–117

    Google Scholar 

  • Pan J, Zhu Y, Cao W (2007) Modeling plant carbon flow and grain starch accumulation in wheat. Field Crops Res 101:276–284

    Article  Google Scholar 

  • Panozzo JF, Eagles HA, Wootton M (2001) Changes in protein composition during grain development in wheat. Aust J Agric Res 52:485–493

    Article  CAS  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Payne PI, Holt LM, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond 304:359–371

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Philippe S, Barron C, Robert P, Dexaux MF, Saulnier L, Guillon F (2006) Characterization using Raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm. J Agric Food Chem 54:5113–5119

    Article  CAS  PubMed  Google Scholar 

  • Piikki K, Temmerman LD, Ojanpera K, Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28:245–254

    Article  CAS  Google Scholar 

  • Pleijel H, Danielsson H (2009) Yield dilution of grain in wheat grown in open top chambers experiments with elevated CO2 and O3 exposure. J Cereal Sci 50:278–282

    Article  CAS  Google Scholar 

  • Pleijel H, Broberg MC, Uddling J, Mills G (2018) Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci Total Environ 614:687–692

    Article  CAS  Google Scholar 

  • Poustini K (2002) Evaluation of the response of 30 wheat cultivars to salinity. Iranian J Agric Sci 3:57–64

    Google Scholar 

  • Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Rakszegi M, Lovegrove A, Balla K, Láng L, Bedő Z, Veisz O, Shewry PR (2014) Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydr Polym 102:557–565

    Article  CAS  PubMed  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long term of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater. Agric Ecosyst Environ J 109:310–322

    Article  CAS  Google Scholar 

  • Rharrabti Y, Villegas D, Royo C, Martos-Nȗnez V, Garcȋa del Moral LF (2003) Durum wheat quality in Mediterranean environments. II. Influence of climatic variables and relationships between quality parameters. Field Crops Res 80:133–140

    Article  Google Scholar 

  • Rice R (2007) The physiological role of minerals in the plant. In: Datnoff et al (eds) Mineral nutrition and plant disease. American Preclinical Services, St. Paul, p 278

    Google Scholar 

  • Rijven AHGC (1986) Heat inactivation of starch synthase in wheat endosperm. Plant Physiol 81:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie JT, Singh U, Godwin DC, Bowen WT (1998) Cereal growth, development and yield. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic Publishers/Springer, Dordrecht, pp 79–98

    Chapter  Google Scholar 

  • Ruibal-Mendieta NL, Rozenberg R, Delacroix DL, Petitjean G, Dekeyser A, Baccelli C, Marques C, Delzenne NM, Meurens M, Habib-Jiwan JL, Quetin-Leclercq J (2004) Spelt (Triticum spelta L.) and Winter Wheat (Triticum aestivum L.) whole meals have similar sterol profiles, as determined by quantitative liquid chromatography and mass spectrometry analysis. J Agric Food Chem 52:4802–4807

    Article  CAS  PubMed  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NP, Ram PC, Singh BN, Rane J, McDonald G, Khabaz-Saberi H (2008) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma D, Mamrutha HM, Gupta VK, Tiwari R, Singh R (2015) Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Res on Crops 16:139–146

    Article  Google Scholar 

  • Sharma D, Singh R, Rane J, Gupta VK, Mamrutha HM, Tiwari R (2016) Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticum aestivum L.). Plant Breed 135:538–545

    Article  CAS  Google Scholar 

  • Sharma D, Tiwari R, Gupta VK, Rane J, Singh R (2018) Genotype and ambient temperature during growth can determine the quality of starch from wheat. J Cereal Sci 79:240–246

    Article  CAS  Google Scholar 

  • Shen Y, Guo W, Zhou Y, Zhu X, Feng C, Peng Y (2007) Effects of salinity stress on the dynamic changes in the accumulation of grain protein and its components in wheat. J Triticeae Crops 26:100–103

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: a reassessment. J Cereal Sci 4:97–106

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond Ser B Biol Sci 357:133–142

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) The genetics of wheat gluten proteins. In: Hall JC, Dunlap JC, Friedman T (eds) Advances in genetics. Academic Press, San Diego, pp 111–184

    Google Scholar 

  • Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römhed V, Zou CH (2010) Influence of long – term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170

    Article  CAS  Google Scholar 

  • Shimizu C, Kihara M, Aoe S, Araki S, Ito K, Hayashi K, Watari J, Sakata Y, Ikegami S (2008) Effect of high β-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men-a randomized, double-blinded, placebo-controlled trial. Plant Foods Hum Nutr 63:21–25

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kaur L (2004) Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. J Sci Food Agric 84:1241–1252

    Article  CAS  Google Scholar 

  • Singh J, Skerritt JH (2001) Chromosomal control of albumins and globulins in wheat grain assessed using different fractionation procedures. J Cereal Sci 33:163–181

    Article  CAS  Google Scholar 

  • Singh S, Singh G, Singh P, Singh N (2008) Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat cultivars. Food Chem 108:130–139

    Article  CAS  Google Scholar 

  • Šramková Z, Gregová E, Šturdík E (2009) Chemical composition and nutritional quality of wheat grain. Acta Chim Slov 2:115–138

    Google Scholar 

  • Stockle CO, Martin SA, Campbell GS (1994) Cropsyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46:335–359

    Article  Google Scholar 

  • Szydlowski N, Ragel P, Hennen-Bierwagen TA, Planchot V, Myers AM, Merida A, d’Hulst C, Wattebled F (2011) Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. J Exp Bot 62:4547–4559

    Article  CAS  PubMed  Google Scholar 

  • Tai APK, Val Martin M, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang 4:817–821

    Article  CAS  Google Scholar 

  • Tea I, Genter T, Naulet N, Lummerzheim M, Kleiber D (2007) Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J Sci Food Agric 87:2853–2859

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2010) Data reported to the ozone secretariat. Available online at: http://ozone.unep.org/Data_Reporting/

    Google Scholar 

  • van Diepen CA, Wolf J, van Keulen H, Rappoldt C (1989) WOFOST: a simulation model of crop production. Soil Use Manag 5:16–24

    Article  Google Scholar 

  • Veraverbeke WS, Delcour JA (2002) Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit Rev Food Sci Nutr 42:179–208

    Article  CAS  PubMed  Google Scholar 

  • Verma B, Hucl P, Chibbar RN (2009) Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem 116:947–954

    Article  CAS  Google Scholar 

  • Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W (2011) Pre-anthesis high temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wei S, Sun Y, Mao W, Dang T, Yin W, Wang S, Wang X (2017) Elevated ozone level affects micronutrients bioavailability in soil and their concentrations in wheat tissues. Plant Soil Environ 63:381–387

    Article  CAS  Google Scholar 

  • Wardlaw IF (2002) Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot 90:469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren-Wilson J (1967) Ecological data on dry matter production by plants and plant communities. In: Bradley EF, Denmead OT (eds) The collection and processing of field data. Wiley Interscience, New York, pp 77–123

    Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Article  Google Scholar 

  • Wooding AR, Kavale S, Macritchie F, Stoddard FL, Wallace A (2000) Effect of nitrogen and sulphur fertilizer on protein composition, mixing requirements and dough strength of four wheat cultivars. Cereal Chem 77:798–807

    Article  CAS  Google Scholar 

  • Xie ZJ, Jiang D, Cao WX, Dai TB, Jing Q (2003a) Enzymatic mechanism for effects of post-anthesis soil water status on grain starch and protein accumulation in specialty wheat varieties. J Plant Physiol Mol Biol 29:309–316

    CAS  Google Scholar 

  • Xie ZJ, Jiang D, Cao WX, Dai TB, Jing Q (2003b) Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains. J Plant Physiol Mol Biol 29:309–316

    CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Chu J, He X, Si C (2014) Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. J Cereal Sci 60:31–36

    Article  CAS  Google Scholar 

  • Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F (2016) Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J Sci Food Agric 96:2746–2754

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jiang D, Zheng C, Dai T, Cao W (2011) Post-anthesis salt and combination of salt and waterlogging affect distributions of sugars, amino acids, Na+ and K+ in wheat. J Agron Crop Sci 197:31–39

    Article  CAS  Google Scholar 

  • Zheng CF, Jiang D, Dai TB, Jing Q, Cao WX (2009a) Effects of salt and water logging stress at post-anthesis stage on wheat grain yield and quality. Ying Yong Sheng Tai Xue Bao 20:2391–2398

    CAS  PubMed  Google Scholar 

  • Zheng Y, Xu X, Li Z, Yang X, Zhang C, Li F, Jiang G (2009b) Differential responses of grain yield and quality to salinity between contrasting winter wheat cultivars. Seed Sci Biotechnol 3:40–43

    Google Scholar 

  • Zheng YH, Cheng D, Simmons M (2014) Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars. Sci Total Environ 499:18–26

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Wu X, Xin L, Jiang H, Wang X, Cai J, Jiang D (2018) Waterlogging and simulated acid rain after anthesis deteriorate starch quality in wheat grain. Plant Growth Regul 85:257–265

    Article  CAS  Google Scholar 

  • Zu Y, Li Y, Chen J, Chen H (2004) Intraspecific responses in grain quality of 10 wheat cultivars to enhanced UV-B radiation under field conditions. J Photochem Photobiol B Biol 74:95–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Singh, V., Pawar, S.K., Singh, P.K., Kaur, A., Sharma, D. (2019). Abiotic Stress and Wheat Grain Quality: A Comprehensive Review. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_3

Download citation

Publish with us

Policies and ethics