Skip to main content

Plant Growth-Promoting Rhizobacteria: Benign and Useful Substitute for Mitigation of Biotic and Abiotic Stresses

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

An incessant increase in global population along with a continuous augmentation in abiotic stress conditions, such as temperature, pH, salinity, etc., and limitation of natural resources has posed a serious threat to developing nations in terms of food security and enhanced nutritional value of the yield. Substantial crop losses in both qualitative and quantitative aspects due to the several prevalent phytopathogens are adding severity to the existing trouble. Confrontation with this ongoing problem initially led to the application of chemical fertilizers. However, hazardous aftereffects of the chemical fertilizers on the ecosystem have instigated a demand for a promising eco-friendly substitute that deals with both biotic and abiotic stresses. Rhizospheric microorganisms can be utilized as an effective alternative because they reside in soil and have the intrinsic property of upholding balanced ecosystem. These plant growth-promoting rhizobacteria (PGPRs) enhance plant growth even in poor and stressed environmental conditions by the formation of beneficial associations with the host through biological nitrogen fixation, phosphate solubilization, siderophore and hormone production, etc. They can also trigger host defense mechanism through induced systemic resistance (ISR). These PGPRs are also helpful for phytoremediation by various processes such as direct absorption, accumulation, etc. PGPRs are utilized in the fields of phytostimulation, biofertilization, and biocontrol activities. In the current chapter, we would aim to uphold the mechanisms opted by PGPR for effective plant growth promotion and defense under various abiotic as well as biotic stress conditions. In this context, we would also aim to delve in detail about the host-PGPR cross talk during the onset of stress conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pol 20(8):5879–5885

    Article  CAS  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in green gram Vigna radiata (L.) Wilczek using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: a current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. J Bacteriol 2:12–21

    Article  Google Scholar 

  • Ahemad M, Khan MS, Zaidi A, Wani, PA (2009) Remediation of herbicides contaminated soil using microbes. Microbes in Sustainable Agriculture, pp 261–284

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Höfte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Int 11(9):847–854

    Article  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    Article  CAS  PubMed  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque A, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:7

    Google Scholar 

  • Azcon R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 991–1002

    Chapter  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soil 45:405–413

    Article  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Belimov AA, Dietz K (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–121

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Kunakova AM, Gruzdeva EV (1998) Influence of soil pH on the interaction of associative bacteria with barley. Microbiology 67:463–469

    CAS  Google Scholar 

  • Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63(2):266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bishop PE, Jorerger RD (1990) Genetics and molecular biology of an alternative nitrogen fixation system. Plant Mol Biol 41:109–125

    CAS  Google Scholar 

  • Bowler C, van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant-growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cassana F, Perriga D, Sgroya V, Masciarellia O, Pennab C, Lunaa V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E 109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283

    Article  CAS  Google Scholar 

  • Chaudhary V, Prasanna R, Nain L, Dubey SC, Gupta V, SinghR JS, Bhatnagar AK (2012) Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World J Microbiol Biotechnol 28:3301–3310

    Article  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj DJ (2015) Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Sci Horticult 197:441–446

    Article  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10:256–264

    Article  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 201–213

    Chapter  Google Scholar 

  • Dary M, Chamber-Parez MA, Palomares AJ, Pajeuelo E (2010) In situ phytostabilization of heavy metal polluted soils using Lupinus luteus inoculating with metal resistant plant growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63(2):417–428

    Article  PubMed  CAS  Google Scholar 

  • De Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Article  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris H, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Défago G (1993) 2, 4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol 42(3):311–312

    Article  Google Scholar 

  • Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 243–244

    Google Scholar 

  • Duffy BK, Défago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66(8):3142–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194

    Article  Google Scholar 

  • Estevezi J, Dardanellii MS, Megiase M, Rodriguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:2109–2117

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting Bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose GM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6):227–242

    Article  CAS  Google Scholar 

  • Gossen BD, Rimmer SR, Holley JD (2001) First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Dis 85:1206

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102

    CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:1117–1153

    Article  CAS  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas Cicer arietinum and faba beans Viciafaba under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Hammerschmidt R (2005) Phenols and plant-pathogen interactions: the saga continues. Physiol Mol Plant Pathol 66:77–78

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidari M, Golpayengani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61

    Google Scholar 

  • Hiltner LT (1904) On every experiences and problems in the field of soil bacteriology and under special supervision of the foundation and Broche. Job Deut Landw Ges Berlin 98:59–78

    Google Scholar 

  • Hoflich G, Metz R (1997) Interactions of plant-microorganism associations in heavy metal containing soils from sewage farms. Bodenkultur 48:239–247

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42(10):1825–1831

    CAS  Google Scholar 

  • Indira Gandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56(4):327–333

    Article  CAS  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium mediated reprogramming of defense network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2015) Biocontrol agents-mediated suppression of oxalic acid-induced cell death during Sclerotinia sclerotiorum-pea interaction. J Basic Microbiol 55(5):601–606

    Article  CAS  PubMed  Google Scholar 

  • Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol Control 42:178–185

    Article  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35(2):323–331

    Article  CAS  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  CAS  PubMed  Google Scholar 

  • Keel C, Défago G, Gange AC, Brown VK (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Multitrophic interactions in terrestrial system. Blackwell Science, Oxford, pp 27–47

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:11–19

    Article  CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33(2):389–397

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. J Incl Phenom Macro 32(2–3):385–403

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In Station de pathologie vegetable etphyto-bacteriology (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, vol. II. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Func Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34(3):558–573

    Article  CAS  Google Scholar 

  • Kumari A, Goyal RK, Choudhary M, Sindhu SS (2016) Effects of some plant growth promoting rhizobacteria (PGPR) strains on growth and flowering of chrysanthemum. J Crop Weed 12(1):7–15

    Google Scholar 

  • Ladha JK, De Bruijn FJ, Malik KA (1997) Introduction: assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil 194(1–2):1–10

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57(2):510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011a) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JA, Freitas H (2011b) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Mondal KC, Dey S, Pati BR (2007) Optimization of cultural and nutritional conditions for indole-3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vignamungo (L.) Hepper. Res J Microbiol 2:239–246

    Article  CAS  Google Scholar 

  • Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria – effects on phytoremediation strategies. Chemosphere 92:74–83

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil and fertilizers phosphorus update. In: Proceedings of Alberta soil science workshop proceedings, Feb. 20–22, Edmonton, Alberta, pp 84–104

    Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Morsy AA, Salama KHA, Kamel HA, Mansour MMF (2013) Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia J Biosci 6:1–10

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53(10):1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55(11):1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013a) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, India, pp 51–103

    Chapter  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013b) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41(5):653–658

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag 3(1):0–0

    Article  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2(4):353–368

    Article  CAS  Google Scholar 

  • Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69(2):861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2005) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on microbial characteristics. J Biosci Bioeng 102:157–161

    Article  CAS  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78(1):84–88

    CAS  Google Scholar 

  • Panwar M, Tewari R, Nayyar H (2014) Microbial consortium of plant growth-promoting rhizobacteria improves the performance of plants growing in stressed soils: an overview. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 257–285

    Google Scholar 

  • Parida AK, Das AB (2005) Salt stress and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–249

    Article  CAS  PubMed  Google Scholar 

  • Parke JL (1991) Root colonization by indigenous and introduced microorganisms. In: Keister DL, Gregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 33–42

    Chapter  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81(1–4):537

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Singh S, Sarma BK, Singh HB (2016a) Endophytic Alcaligenes isolated from horticultural and medicinal crops promotes growth in okra (Abelmoschus esculentus). J Plant Growth Regul 35(2):401–412

    Article  CAS  Google Scholar 

  • Ray S, Singh V, Singh S, Sarma BK, Singh HB (2016b) Biochemical and histochemical analyses revealing endophytic Alcaligene sfaecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiol Biochem 109:430–441

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Mishra S, Bisen K, Singh S, Sarma BK, Singh HB (2018a) Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol Res 207:100–107

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Singh J, Rajput RS, Singh HB, Singh S (2018b) Endophytic Bacteria: an essential requirement of phyto nutrition. Nutr Food Sci Int J 5(2):1–5

    CAS  Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19(1):241–266

    Article  CAS  PubMed  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Ryu R, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by 4 TyrR in Enterobacter cloacae UW5. Am Soc Microbiol 190(Suppl 21):1–35

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:10635–10648

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkatesvarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. J Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459(7250):1071

    Article  CAS  PubMed  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Saxena AK, Tilak KVBR (1998) In: Verma AK (ed) Free-living nitrogen fixers: its role in crop production. Microbes for health, wealth and sustainable environment. Malhotra Publ Co, New Delhi, pp 25–64

    Google Scholar 

  • Schroth MN, Hancock JG (1981) Selected topics in biological control. Annu Rev Microbiol 35(1):453–476

    Article  CAS  PubMed  Google Scholar 

  • Seidahmed HA, Ballal ME, Mahgoub A (2013) Sodicity tolerance of Moringa olifera, Acacia senegal and Acacia tortilis subspp. raddiana seedlings. J Nat Resour Environ Stu 1:4–6

    Google Scholar 

  • Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273–279

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrolagents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Singh NK, Rai UN, Tewari A, Singh M (2010) Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge-amended soil. Bull Environ Contam Toxicol 84:118–124

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2013) Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Ann Appl Biol 163(1):33–46

    Article  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT-Food Sci Technol 56(2):390–397

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:4

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:4425–4448

    Article  CAS  Google Scholar 

  • Spence C, Alff E, Johnson C (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefan M, Munteau N, Stoleru V, Mihasan M (2013) Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status, and yield of runner bean. Rom Biotechnol Lett 18:8132–8143

    CAS  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72(2):107–123

    Article  Google Scholar 

  • Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27(4):495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50

    Google Scholar 

  • Thomashow LS (1996a) Biological control of plant root pathogens. Curr Opin Biotechnol 7(3):343–347

    Article  CAS  PubMed  Google Scholar 

  • Thomashow M (1996b) Ecological identity: becoming a reflective environmentalist. MIT Press, Cambridge, MA

    Google Scholar 

  • Turnbull GAJ, Morgan AW, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2014) Molecular mechanism of benign microbe-elicited alleviation of biotic and abiotic stresses for plants. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 281–295

    Chapter  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2017) Characterization of bacterial volatiles and their impact on plant health under abiotic stress. In: Choudhary DK, Sharma AK, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, Singapore, pp 15–24

    Chapter  Google Scholar 

  • Vaishnav A, Kasotia A, Choudhary DK (2018) Role of functional bacterial phylum proteobacteria in Glycine max growth promotion under abiotic stress: a Glimpse on case study. In: Choudhary DK, Kumar M, Prasad R, Kumar V (eds) In silico approach for sustainable agriculture. Springer, Singapore, pp 17–49

    Chapter  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62(5):1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve the productivity of agro-ecosystems. Crit Rev Plant Sci 23:2175–2193

    Article  CAS  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res Acad Press 26:1–134

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Wang J, Yuan H (2006) High-resolution analysis of catechol-type siderophores using polyamide thin layer chromatography. J Microbiol Met 67(2):390–393

    Article  CAS  Google Scholar 

  • Yadav S, Irfan M, Ahmed A, Hayat S (2011) Causes of salinity and plant manifestations of salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiate L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56(3):263–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

JS is grateful to CSIR for providing financial support in form CSIR-JRF fellowship. PS and RSR are thankful to UGC for providing financial assistance in the form of UGC-RET fellowship. SR and HBS are thankful to Department of Science and Technology (DST) for awarding project grant (NRDMS/SC/ST/40/016).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Singh, P., Ray, S., Rajput, R.S., Singh, H.B. (2019). Plant Growth-Promoting Rhizobacteria: Benign and Useful Substitute for Mitigation of Biotic and Abiotic Stresses. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_5

Download citation

Publish with us

Policies and ethics