Skip to main content

Transformation of Matter and Energy in Crops Under the Influence of Brassinosteroids

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

The application of various allelochemicals in agricultural production is carried out primarily to increase the quantity and quality of crop yield. These allelochemicals, which include brasssinosteroids (BRs), can reinforce the resistance of crops to abiotic stresses or increase their competitive ability against other organisms (biotic stresses). In particular, BRs can directly intensify crop physiological processes leading to increased growth and development, which create essential prerequisites for their increased yield. Thus, the use of the BRs in plant protection and agriculture is of particular interest. As yield is the ultimate and most important characteristic related to agricultural production, it represents the end product of transforming matter and energy in plants in the field. In order to obtain better qualitative and quantitative yield results, different crops are often subjected to various concentrations of 24-epibrassinolide (24-EBL). Therefore, this chapter concerns biochemical and biophysical responses of several (maize, soybean, barley etc.) crops treated with a range of concentrations of 24-EBL at various stages of development (seedlings, vegetative stages of plants before flowering and mature field plants). Particular attention is given to the influence of exogenously applied 24-EBL on specified physiological and biochemical parameters (carbohydrates, starch, polyphenols, pigments, proteins, etc.) in selected crops, especially maize, in relation to their likely roles in determining crop biomass accumulation, biomass redistribution, growth, yield and improved resistance to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.

    Article  CAS  Google Scholar 

  • Amzallag, G. N. (2001). Data analysis in plant physiology: Are we missing the reality? Plant, Cell & Environment, 24, 881–890.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Ashby, W. R. (1957). An introduction to cybernetics. London: Chapman & Hall Ltd.

    Book  Google Scholar 

  • Athwal, D. S. (1971). Semidwarf rice and wheat in global food needs. The Quarterly Review of Biology, 46, 1–34.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 659–668.

    Article  CAS  Google Scholar 

  • Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli, C. G., Casalongué, C. A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C. H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73–88.

    Article  CAS  Google Scholar 

  • Bishop, G. J., & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. The Plant Cell, 14, S97–S110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcıa, S., Cheng, J.-C., Nam, K. H., Li, J., & Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131, 5341–5351.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Delgado, A., Lee, J.-Y., & Demura, T. (2010). Regulatory mechanisms for specification and patterning of plant vascular tissues. Annual Review of Cell and Developmental Biology, 26, 605–637.

    Article  CAS  PubMed  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Hu, B., Zhao, H., & Kuai, B. (2005). Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum, 123, 57–66.

    Article  CAS  Google Scholar 

  • Celik, H., Asik, B. B., Gurel, S., & Katkat, A. V. (2010). Effect of potassium and iron on macro element uptake of maize. Zemdirbyste-Agriculture, 97, 11–22.

    Google Scholar 

  • Cheikh, N., Brenner, M. L., Huber, J. L., & Huber, S. C. (1992). Regulation of Sucrose Phosphate Synthase by Gibberelins in soybean and spinach plants. Plant Physiology, 100, 1238–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). BRASSINOSTEROIDS: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.

    Article  CAS  PubMed  Google Scholar 

  • Crocco, C. D., Holm, M., Yanovsky, M. J., & Botto, J. F. (2011). Function of B-BOX proteins under shade. Plant Signaling & Behavior, 6, 101–104.

    Article  CAS  Google Scholar 

  • Darussalam, Cole, M. A., & Patrick, J. W. (1998). Auxin control of photoassimilate transport to and within developing grains of wheat. Australian Journal of Plant Physiology, 25, 69–77.

    CAS  Google Scholar 

  • De Bruyne, L., Höfte, M., & De Vleesschauwer, D. (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7, 943–959.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, C. C., Marcelis, L. F. M., Van den Boogaard, R., Harbinson, J., & Lambers, H. (2003). Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany, 54, 1957–1967.

    Article  PubMed  Google Scholar 

  • Derevyanchuk, M. V., Kretynin, S., Iakovenko, O., Litvinovskaya, R. P., Zhabinskii, V., Martinec, J., Blume, Y., Khripach, V. A., & Kravets, V. S. (2017). Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movement and phospholipid signaling under salt stress. Steroids, 117, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Divi U.K., Rahman T. and P. Krishna (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10: 151. http://www.biomedcentral.com/1471-2229/10/151

  • Divi, U. K., & Krishna, P. (2010). Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation, 29, 385–393.

    Article  CAS  Google Scholar 

  • Domagalska, M. A., Schomburg, F. M., Amasino, R. M., Vierstra, R. D., Nagy, F., & Davis, S. J. (2007). Attenuations of brassinosteroid signaling enhances FLC expression and delays flowering. Development, 134, 2841–2850.

    Article  CAS  PubMed  Google Scholar 

  • Domagalska, M. A., Sarnowska, E., Nagy, F., & Davis, S. J. (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One, 5, e14012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dragicevic, V. (2015). Thermodynamics of abiotic stress and stress tolerance of cultivated plants. In M. Gorji-Bandpy (Ed.), Recent advances in thermo and fluid dynamics (pp. 195–222). Rijeka: InTech.

    Google Scholar 

  • Dragicevic, V., & Stojkovic, M. (2016). Biofortification – Enriched of crops with mineral nutrients. Saarbrücken: LAP LAMBERT Academic Publishing, OmniScriptum GmbH& Co. KG. isbn:978-3-659-90382-3.

    Google Scholar 

  • Dragičević, V., Nikolić, B., Radosavljević, M., Đurić, N., Dodig, D., Stojiljković, M., & Kravić, N. (2016a). Barley grain enrichement with essential elements by agronomic biofortification. Acta Periodica Technologica, 47, 1–9. (APTEFF. ISSN 1450-7188. https://doi.org/10.2298/APT1647001D.

    Article  Google Scholar 

  • Dragičević, V., Nikolić, B., Waisi, H., Stojiljković, M., & Simić, M. (2016b). Increase of soybean nutritional quality with non-standard foliar fertilizers. Journal of Central European Agriculture, 17, 356–368.

    Article  Google Scholar 

  • El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S. M., Balzergue, S., Baudouin, E., & Bailly, C. (2015). Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell & Environment, 38, 364–374.

    Article  CAS  Google Scholar 

  • Fabregas, N., Ibanes, M., & Cano-Delgado, A. I. (2010). A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana. Plant Signaling & Behavior, 5, 903–906.

    Article  Google Scholar 

  • Feng, Z., Wu, C., Wang, C., Roh, J., Zhang, L., Chen, J., Zhang, S., Zhang, H., Yang, C., Hu, J., You, X., Liu, X., Yang, X., Guo, X., Zhang, X., Wu, F., Terzaghi, W., Kim, S.-K., Jiang, L., & Wan, J. (2012). SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany, 67, 4241–4253.

    Article  CAS  Google Scholar 

  • Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501–523.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, M. A., McCouch, S. R., & Hall, R. D. (2009). Not just a grain of rice: The quest for quality. Trends in Plant Science, 14, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Flock, T., Weatheritt, R. J., Latysheva, N. S., & Babu, M. M. (2014). Controlling entropy to tune the functions of intrinsically disorder regions. Current Opinion in Structural Biology, 26, 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Frachebaud, Y., Ribaut, J.-M., Vargas, M., Mesmer, R., & Stamp, P. (2002). Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). Journal of Experimental Botany, 53, 1967–1977.

    Article  CAS  Google Scholar 

  • Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 13446–13451.

    Article  Google Scholar 

  • Gomes, M. M. A. (2011). Physiological effects related to brassinosteroid application in plants. In Brassinosteroids: A class of plant hormone (pp. 193–242). Netherlands: Springer.

    Chapter  Google Scholar 

  • Grover, M. (2014). Brassinosteroid synthesis as context sensitive language acceptance problem. International Journal of Computational Science and Engineering (IJCSE), 6, 118–120.

    Google Scholar 

  • Gudesblat, G. E., & Russinova, E. (2011). Plants grow on brassinosteroids. Current Opinion in Plant Biology, 14, 530–537.

    Article  CAS  PubMed  Google Scholar 

  • Guivarc’h, A., Rembur, J., Goetz, M., Roitsch, T., Noin, M., Schmülling, T., & Chriqui, D. (2002). Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. Journal of Experimental Botany, 53, 621–629.

    Article  PubMed  Google Scholar 

  • Gururani, M. A., Upadhyaya, C. P., Strasser, R. J., Yu, J. W., & Park, S. W. (2013). Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Science, 198, 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Gururani, M. A., Mohanta, T. K., & Bae, H. (2015a). Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16, 19055–19085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gururani, M. A., Ganesan, M., & Song, P.-S. (2015b). Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnology Advances, 33, 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Gururani, M. A., Venkatesh, J., & Tran, L.-S. P. (2015c). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304–1320.

    Article  CAS  PubMed  Google Scholar 

  • Ha, C. V., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Dong, N. V., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., & Tran, L.-S. P. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 111, 851–856.

    Article  CAS  Google Scholar 

  • Hartwig, T., & Wang, Z. Y. (2015). The molecular circuit of steroid signalling in plants. Essays in Biochemistry, 58, 71–82.

    Article  PubMed  Google Scholar 

  • Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences, 108, 19814–19819.

    Article  CAS  Google Scholar 

  • Hartwig, T., Corvalan, C., Best, N. B., Budka, J. S., Zhu, J.-Y., Choe, S., & Schulz, B. (2012). Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One, 7, e36625. https://doi.org/10.1371/journal.pone.0036625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, S. A., Hayat, S., Ali, B., & Ahmad, A. (2008). 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution, 151, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, S. A., Hayat, S., & Ahmad, A. (2011). Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 84, 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • Holá, D. (2011). Brassinosteroids and photosynthesis. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 143–192). New York: Springer Science & Business Media. isbn:978-94-007-0188-5. e-ISBN 978-94-007-0189-2.

    Chapter  Google Scholar 

  • Hola, D., Rothova, O., Kočova, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.

    Article  CAS  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell, 15, 2900–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., & Matsuoka, M. (2004). Brassinosteroids and rice architecture. Journal of Pest Science, 29, 184–188.

    Article  CAS  Google Scholar 

  • Horton, P. (2000). Prospects for crop improvement through the genetic manipulation of photosynthesis: Morphological and biochemical aspects of light capture. Journal of Experimental Botany, 51, 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Han, C., Peng, W., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D., & Ren, C. (2010). Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. Plant Signaling & Behavior, 5, 140–142.

    Article  CAS  Google Scholar 

  • Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., & Skoczowski, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 43, 293–298.

    Article  CAS  Google Scholar 

  • Janeczko, A., Biesaga-Koscielniak, J., & Dziurka, M. (2009). 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Science and Technology, 37, 625–639.

    Article  Google Scholar 

  • Janković, B. (2013). Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydrate Polymers, 95, 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Janković, B. Ž., & Waisi, H. (2017). The thermodynamics properties of dehydration of two maize hybrids under the influence of 24-epibrassinolide: The impact of the mutual interaction of bioactive compounds and water molecules during this process, CHAPTER 4. In R. Porter & N. Parker (Eds.), Bioactive compounds, sources, properties and applications, biotechnology in agriculture, industry and medicine (pp. 179–234). New York: NOVA Science Publishers. isbn:978-1-53612-418-7. ISBN: 978-1-53612-424-8 (eBook).

    Google Scholar 

  • Janković, B., Stopić, S., Bogović, J., & Friedrich, B. (2014). Kinetic and thermodynamic investigations of non-isothermal decomposition process of a commercial silver nitrate in an argon atmosphere used as the precursors for ultrasonic spray pyrolysis (USP): The mechanistic approach. Chemical Engineering and Processing, 82, 71–87.

    Article  CAS  Google Scholar 

  • Kebrom, T. H., & Brutnell, T. P. (2007). The molecular analysis of the shade avoidance syndrome in the grasses has begun. Journal of Experimental Botany, 58, 3079–3089.

    Article  CAS  PubMed  Google Scholar 

  • Keller, M. M., Jaillais, Y., Pedmale, U. V., Moreno, J. E., Chory, J., & Ballare, C. L. (2011). Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. The Plant Journal, 67, 195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khripach, V., Zhabinskii, V., & De Groot, A. (2000). Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Annals of Botany, 86, 441–447.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Kim, B. H., Lim, C. J., Lim, C. O., & Nam, K. H. (2010). Constitutive activation of stress-inducible genes in a brassinosteroid insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiologia Plantarum, 138, 191–204.

    Article  CAS  PubMed  Google Scholar 

  • Kochian, L. V., Hoekenga, O. A., & Pineros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459–493.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T., & Nakano, T. (2010). The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal, 61, 409–422.

    Article  CAS  PubMed  Google Scholar 

  • Kozuka, T., Kobayashi, J., Horiguchi, G., Demura, T., Sakakibara, H., Tsukaya, H., & Nagatani, A. (2010). Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiology, 153, 1608–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner, I., Minibayeva, F. V., Beckett, R. P., & Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. The New Phytologist, 188, 655–673.

    Article  CAS  PubMed  Google Scholar 

  • Kutschera, U., & Wang, Z. Y. (2012). Brassinosteroiod action in flowering plants: A Darwinian perspective. Journal of Experimental Botany, 63, 3511–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang, A., & Thorpe, M. H. (1985). Partitioning of assimilates at the whole plant level. In Photosynthesis and physiology of the whole plant (pp. 108–135). OECD Workshop, Braunschweig, Germany. Paris: OECD.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology. Ecophysiology and stress physiology of functional groups (4th Edition on English). Berlin: Springer.

    Google Scholar 

  • Laxmi, A., Paul, L. K., Peters, J. L., & Khurana, J. P. (2004). Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Molecular Biology, 56, 185–201.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Xu, J., Xu, Z.-J., & Xue, H.-W. (2005). Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. The Plant Cell, 17, 2738–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Asami, T., Wu, X., Tsang, E. W. T., & Cutler, A. J. (2007). A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiology, 145, 87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Li, Y., Chen, S., & An, L. (2010). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 61, 4221–4230.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. (1996). Vegetation stress: An introduction to the stress concept in plants. Journal of Plant Physiology, 148, 4–14.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Miehe, J. A. (1997). Fluorescence imaging as a tool for plant stress. Trends in Plant Science, 2, 316–320.

    Article  Google Scholar 

  • Lisso, J., Altmann, T., & Mussig, C. (2006). Metabolic changes in fruits of the tomato dx mutant. Phytochemistry, 67, 2232–2238.

    Article  CAS  PubMed  Google Scholar 

  • Long, S. P., Zhu, X.-G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29, 315–330.

    Article  CAS  Google Scholar 

  • Lundin, B., Hansson, M., Schoefs, B., Vener, A. V., & Spetea, C. (2007). The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. The Plant Journal, 49, 528–539.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X. M., Lin, W. H., Zhu, S., Zhu, J. Y., Sun, Y., Fan, X. Y., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K., & Wang, Z. Y. (2010). Integration of light- and brassinosteroid signaling pathways by a GATA transcription factor in Arabidopsis. Developmental Cell, 19, 872–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroids. C-6 oxidase. PLoS One, 7, e30798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, K., & Johnson, G. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Mondo, V. H. V., Cicero, S. M., Dourado-Neto, D., Pupim, T. L., & Dias, M. A. N. (2013). Seed vigor and initial growth of corn crop. Journal of Seed Science, 35, 64–69.

    Article  Google Scholar 

  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 141, 924–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müssig, C., Shin, G.-H., & Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133, 1261–1271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagata, N., Asami, T., & Yoshida, S. (2001). Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant & Cell Physiology, 42, 1006–1011.

    Article  CAS  Google Scholar 

  • Nakano, H., Muramatsu, S., Makino, A., & Mae, T. (2000). Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Australian Journal of Plant Physiology, 27, 167–173.

    CAS  Google Scholar 

  • Nam, K. H., & Li, J. (2004). The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE1. The Plant Cell, 16, 2406–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narula, N., Kothe, E., & Behl, R. K. (2009). Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality, 82, 122–130.

    CAS  Google Scholar 

  • Nikolić, B., & Waisi, H. (2012). Effect of simultaneous application brassinosteroids and reduced doses of fungicides on pomological characteristics and yield of apple (Malus Domestica L.). Proceedings of abstracts of 1st International Brassinosteroid Conference, Barcelona June 27th – 29th 2012, ed (p. 44). Barcelona: AOPC/Brassinosteroid 2012, CSIC, Centre de Recerca en Agrigenòmica.

    Google Scholar 

  • Nikolić, B., Waisi, H., Dragićević, V., Marisavljević, D., Pavlović, D., Jovanović, V., & Đurović, S. (2013). The effect of different light and nitrogen growth regimes on brassinosteroid activity in maize plants. In Serbian Plant Physiology Society and Institute for Biological Research & S. Stanković (Eds.), Proceedings of abstracts of 20th symposium of the Serbian Plant Physiology Society (pp. 49–50). Subotica: University of Belgrade. isbn:978-86-912591-2-9.

    Google Scholar 

  • Nikolić, B., Dragičević, V., Waisi, H., Đurović, S., Milićević, Z., Spasojević, I., & Brankov, M. (2014). Impact of root manipulation and brassinosteroids on growth, photosynthesis and thermodinamics of maize at lower temperatures. In Ž. Čupić, & S. Anić (Eds.), Physical chemistry 2014, 12th international conference on fundamental and applied aspects of physical chemistry (pp. 477–481). Belgrade. (ISBN 978-86-82475-31-6). September 22–26, 2014.

    Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998a). A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? Journal of Experimental Botany, 49, 1895–1908.

    CAS  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998b). ASCORBATE AND GLUTHATHIONE: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.

    Article  CAS  Google Scholar 

  • Oh, M. H., Sun, J., Oh, D. H., Zielinski, R. E., Clouse, S. D., & Huber, |. S. C. (2011). Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiology, 157, 120–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, M. H., Wang, X., Clouse, S. D., & Huber, S. C. (2012). Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proceedings of the National Academy of Sciences, 109, 327–332.

    Article  CAS  Google Scholar 

  • Ovecka, M., Berson, T., Beck, M., Derksen, J., Samaj, J., Baluska, F., & Lichtscheidl. (2010). Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. The Plant Cell, 22, 2999–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, W., Kim, H. B., Kim, W. T., Park, P. B., An, G., & Choe, S. (2006). Rice bending lamina 2 (bla2) mutants are defective in a cytochrome P450 (CYP734A6) gene predicted to mediate brassinosteroid catabolism. Journal of Plant Biology, 49, 469–476.

    Article  CAS  Google Scholar 

  • Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383–1400.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Espana, V. H., Sanchez-Leon, N., & Vielle-Calzada, J.-P. (2011). CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. Plant Signaling & Behavior, 6, 321–326.

    Article  CAS  Google Scholar 

  • Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Pons, T. L., Jordi, W., & Kuiper, D. (2001). Acclimation of plants to light gradients in leaf canopies: Evidence for a possible role for cytokinins transported in the transpiration stream. Journal of Experimental Botany, 52, 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  • Poorter, H., & Van der Verf. (1998). Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In H. Lambers, H. Poorter, & M. M. I. Van Vuuren (Eds.), Inherent variation in plant growth. Physiological mechanisms and ecological consequences (pp. 309–336). Leiden: Backhuys.

    Google Scholar 

  • Qereix, A., Dewar, R. C., Gaudillere, J.-P., Dayau, S., & Valancogne, C. (2001). Sink feedback regulation of photosynthesis in vines: Measurements and a model. Journal of Experimental Botany, 52, 2313–2322.

    Article  Google Scholar 

  • Quarrie, S. (1997). How to use physiology to improve the drought resistance of maize. In Agriculture Research Institute “Serbia” (Ed.), Proceedings of abstracts of 12th symposium of the Yugoslav Society for Plant Physiology (p. 6) (no ISBN number). Kragujevac.

    Google Scholar 

  • Raghavendra, A. S., Gonugunta, V. K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15, 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt, D., & Kuhlemeier, C. (2002). Plant architecture. EMBO Reports, 3, 846–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuzeau, C., Pen, J., Frankard, V., de Wolf, J., Peerbolte, R., Broekaert, W., & Van Camp, W. (2005). TraitMill: A discovery engine for identifying yield enhancement genes in cereals. Molecular Plant Breeding, 5, 753–759.

    Google Scholar 

  • Rivero, R. M., Shulaev, V., & Blumwald, E. (2009). Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 150, 1530–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.

    Article  PubMed  CAS  Google Scholar 

  • Saglam-Cag, S. (2007). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnological Equipment, 21, 63–65.

    Article  CAS  Google Scholar 

  • Sakamoto, T., & Matsuoka, M. (2008). Identifying and exploiting grain yield genes in rice. Current Opinion in Plant Biology, 11, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Morinaka, Y., Inukai, Y., Kitano, H., & Fujioka, S. (2013). Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal, 73, 676–688.

    Article  CAS  PubMed  Google Scholar 

  • Sankar, M., Osmont, K. S., Rolcik, J., Gujas, B., Tarkowska, D., Strnad, M., Xenarios, I., & Hardtke, C. S. (2011). A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk. Bioinformatics, 27, 1404–1412.

    Article  CAS  PubMed  Google Scholar 

  • Schluter, U., Kopke, D., Altmann, T., & Mussig, C. (2002). Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. Plant, Cell & Environment, 25, 783–791.

    Article  Google Scholar 

  • Schulz, B., Best, N., Budka, J., Chuck, G., Hartwig, T., Johal, G., & Prasad Potlur, D. (2012). The GRAS-like transcription factor upright leaf angle1 (URL1) encodes a monocot-specific brassinosteroid function for leaf angle control in maize. In A. Cano-Delgado (Ed.), Proceedings of abstracts of 1st international brassinosteroid conference, Barcelona June 27th–29th 2012 (p. 43) (edited only in electron form in USB device) CSIC, Centre de Recerca en Agrigenòmica.

    Google Scholar 

  • Serna, M., Coll, Y., Zapata, P. J., Botella, M. A., Pretel, M. T., & Amoros, A. (2015). A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamine in lettuce plants. Scientia Horticulturae, 185, 105–112.

    Article  CAS  Google Scholar 

  • Sharma, P., & Bhardwaj, R. (2007). Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum, 29, 259–263.

    Article  CAS  Google Scholar 

  • Sola-Penna, M., & Meyer-Fernandes, J. R. (1998). Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: Why is trehalose more effective than other sugars? Archives of Biochemistry and Biophysics, 60, 10–14.

    Article  Google Scholar 

  • Song, L., Zhou, X.-Y., Li, L., Xue, L.-J., Yang, X., & Xue, H.-W. (2009). Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Molecular Plant, 2, 755–772.

    Article  CAS  PubMed  Google Scholar 

  • Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D., & Lindsey, K. (2002). hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. The Plant Cell, 14, 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: All roads lead to Rome. Cellular and Molecular Life Sciences, 68, 2013–2037.

    Article  CAS  PubMed  Google Scholar 

  • Stevanović, M., Trkulja, N., Nikolić, B., Dolovac, N., & Ivanović, Ž. (2012). Effect of simultaneous application of brassinosteroids and reduced doses of fungicides on Venturia inaequalis. In Institute for Plant Protection and Environment (Ed.), Proceedings of international symposium: Current trends in plant protection (pp. 379–384). Belgrade. 25–28 September 2012 (ISBN: 978-86-910951-1-6. UDK: 634.11–248.231).

    Google Scholar 

  • Stitt, M., & Sonnewald, U. (1995). Regulation of metabolism in transgenic plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 341–368.

    Article  CAS  Google Scholar 

  • Sun, W. Q. (2002). Methods for the study of water relations under desiccation stress. In M. Black & H. W. Pritchard (Eds.), Desiccation and survival in plants: Drying without dying (pp. 47–91). New York: CABI Publishing.

    Chapter  Google Scholar 

  • Sun, J., Okita, T. W., & Edwards, G. E. (1999). Modification of carbon partitioning, photosynthetic capacity and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorilase activity. Plant Physiology, 119, 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons, G. M., Schultz, L., Kerckhoffs, L. H. J., Davies, N. W., Gregory, D., & Reid, J. B. (2002). Uncoupling brassinosteroid levels and de-etiolation in pea. Physiologia Plantarum, 115, 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons, G. M., Smith, J. J., Nomura, T., Davies, N. W., Yokota, T., & Reid, J. B. (2008). The hormonal regulation of de-etiolation. Planta, 227, 1115–1125.

    Article  CAS  PubMed  Google Scholar 

  • Sze, H., Li, X., & Palmgren, M. G. (1999). Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. The Plant Cell, 11, 677–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, A., Nakagawa, H., Tomita, C., Shimatani, Z., Ohtake, M., Nomura, T., Jiang, C. J., Dubouzet, J. G., Kikuchi, S., Sekimoto, H., Yokota, T., Asami, T., Kamakura, T., & Mori, M. (2009). BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiology, 151, 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Camp, W. (2005). Yield enhancement genes: Seeds for growth. Current Opinion in Biotechnology, 16, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • van Esse, G. W., van Mourik, S., Stigter, H., ten Hove, C. A., Molenaar, J., & de Vries, S. C. (2012). A mathematical model for bassinosteroid insensitive-mediated signaling in root growth and hypocotil elongation. Plant Physiology, 160, 523–532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61, 843–847.

    Article  Google Scholar 

  • Vernadsky, V. I. (2008). Biosphera and noosphera. Moskow. (printed on Russian, but cited according translation on Serbian, Belgrade, Serbia 2012: Airis press. isbn:978-86-519-1331-3.

    Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. The Plant Cell, 24, 842–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant, 6, 1738–1757.

    Article  CAS  PubMed  Google Scholar 

  • Waisi, H. (2016). The influence of brassinosteroid 24-epibrassinolide on germination and early stages of growth and development of different maize hybrids (Zea mays L.). PhD thesis (on Serbian), Faculty of Biology, Univercity of Belgrade, Belgrade, Serbia.

    Google Scholar 

  • Waisi, H., Kosović, A., Krstić, Đ., Milojković-Opsenica, D., Nikolić, B., Dragićević, V., & Trifković, J. (2015a). Polyphenolic profile of maize seedlings treated with 24-epibrassinolide. Journal of Chemistry, 2015, 976971.

    Article  CAS  Google Scholar 

  • Waisi, H., Nikolić, B., Dragićević, V., Šaponjić, B., Jovanović, V., Trifković, J., & Milojković-Opsenica, D. (2015b). Different aspects of mode of action of brassinosteroids in maize. In Book of proceedings of “AGROSYM 2015”- 6th international scientific agricultural symposium (pp. 332–339). Oktober, 15–18, 2015, Jahorina Mountain (near Sarajevo), Bosnia and Herzegovina, (978-99976-632-2-1), 2015.

    Google Scholar 

  • Waisi, H., Petković, A., Nikolić, B., Janković, B., Raičević, V., Lalević, B., & Giba, Z. (2017a). Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids. Hemijska Industrija, 71, 201–209.

    Article  Google Scholar 

  • Waisi, H., Janković, B., Janković, M., Nikolić, B., Dimkić, I., Lalević, B., & Raičević, V. (2017b). New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide. PLoS One, 12, e0179650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L., Xu, Y., Zhang, C., Ma, Q., Joo, S.-H., Kim, S.-K., Xu, Z., & Chong, K. (2008). OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One, 3, e3521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Werner, C., Ryel, R. J., Correia, O., & Beyschlag, W. (2001). Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant, Cell and Environment, 24, 27–40.

    Article  CAS  Google Scholar 

  • Wolf, S., Mravec, J., Greiner, S., Mouille, G., & Höfte, H. (2012). Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Current Biology, 22, 1732–1737.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. The Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi, W., & Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signaling & Behavior, 5, 1315–1317.

    Article  Google Scholar 

  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009a). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., & Yu, J.-Q. (2009b). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. J., Zhang, Y., Wu, J. X., Wang, J. T., Zhou, Y. H., Shi, K., Yu, Y. L., & Yu, J. Q. (2009c). Brassinosteroids promote metabolism of pesticides in cucumber. Agricultural and Food Chemistry, 57, 8406–8413.

    Article  CAS  Google Scholar 

  • Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62, 4495–4506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, L. W., Du, J. B., Yang, H., Xu, F., Yuan, S., & Lin, H. H. (2009). Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift für Naturforschung. Section C, 64, 225–230.

    Article  CAS  Google Scholar 

  • Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y., Ma, H. C., & Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences, 107, 6100–6105.

    Article  CAS  Google Scholar 

  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., Rodermel, S., & Yin, Y. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Wei, Y., Lu, Y., & Wang, X. (2009). Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signaling & Behavior, 4, 1117–1120.

    Article  CAS  Google Scholar 

  • Zhu, S. Q., Chen, M. W., Ji, B. H., Jiao, D. M., & Liang, J. S. (2011). Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L.) and cabbage (Brassica campestris). Journal of Experimental Botany, 62, 4617–4625.

    Article  CAS  PubMed  Google Scholar 

  • Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61, 1959–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by the Serbian Ministry of Education, Science and Technological Development under the projects number 172015, TR 37021, TR31080 and TR31018.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waisi, H., Nikolic, B., Jankovic, B. (2019). Transformation of Matter and Energy in Crops Under the Influence of Brassinosteroids. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_9

Download citation

Publish with us

Policies and ethics