Skip to main content

Role of Brassinosteroids in the Plant Response to Drought: Do We Know Anything for Certain?

  • Chapter
  • First Online:
Book cover Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) are considered to be major players in the plant response to unfavourable conditions. They have been reported to alleviate stress symptoms and to enhance plant tolerance to various abiotic and biotic stressors including drought. However, our current knowledge of the role of BRs in the plant drought response should perhaps be limited only to the statement that the treatment of plants with BRs can mitigate the negative effects of this stress factor. No clear conclusions on the role of these phytohormones in the plant drought response should be inferred from the currently available data, because the results of BR/drought studies often differ quite substantially. This chapter attempts to provide a critical evaluation of the information available on this topic, i.e., data obtained either from plants treated with exogenously applied BRs or mutants in BR biosynthesis/perception. The existing studies are considered from several viewpoints regarding important aspects of their experimental design and attention is also drawn to some of their shortcomings. The question of whether BRs truly function as specific regulators of drought-induced response or whether the observed effects of BRs on drought-stressed plants are of a more general character remains unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, A. H. H., Darwish, E., & Alobaidy, M. G. (2017). Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16, 9–23.

    Article  CAS  Google Scholar 

  • Alyemeni, M. N., & Al-Quwaiz, S. M. (2014). Effect of 28-homobrassinolide on the drought induced changes in the seeds of Vigna radiata. Legume Research, 37, 515–519.

    Article  Google Scholar 

  • Ambrosone, A., Costa, A., Martinelli, R., Massarreli, I., De Simone, V., Grillo, S., & Leone, A. (2011). Differential gene regulation in potato cells and plants upon abrupt or gradual exposure to water stress. Acta Physiologiae Plantarum, 33, 1157–1171.

    Article  CAS  Google Scholar 

  • Ambrosone, A., Batelli, G., Bostan, H., D’Agostino, N., Chiusano, M. L., Perrotta, G., Leone, A., Grillo, S., & Costa, A. (2017). Distinct gene networks drive differential response to abrupt or gradual water deficit in potato. Gene, 597, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.

    Article  CAS  Google Scholar 

  • Badhan, S., Kole, P., Ball, A., & Mantri, N. (2018). RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiology and Biochemistry, 129, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Bai, Z. Y., Wang, T., Wu, Y. H., Wang, K., Liang, Q. Y., Pan, Y. Z., Jiang, B. B., Zhang, L., Liu, G. L., Jia, Y., & Liu, Q. L. (2017). Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress. Scientific Reports, 7, 41700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaraju, P., Ayodhya Ramulu, C., Venkateshwarlu, M., & Ugandhar, T. (2015). Influence of PEG imposed water stress and exogenous application of brassinosteroids on metabolites in radish. Asian Journal of Science and Technology, 6, 951–955.

    CAS  Google Scholar 

  • Behnamnia, M. (2015). Protective roles of brassinolide on tomato seedlings under drought stress. International Journal of Agriculture and Crop Sciences, 8, 455–462.

    CAS  Google Scholar 

  • Behnamnia, M., Kalantari, K. M., & Rezanejad, F. (2009a). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22–34.

    CAS  Google Scholar 

  • Behnamnia, M., Kalantari, K. M., & Ziaie, J. (2009b). The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turkish Journal of Botany, 33, 417–428.

    Google Scholar 

  • Cartagena, J. A., Seki, M., Tanaka, M., Yamauchi, T., Sato, S., Hirakawa, H., & Tsuge, T. (2015). Gene expression profiles in Jatropha under drought stress and during recovery. Plant Molecular Biology Reporter, 33, 1075–1087.

    Article  CAS  Google Scholar 

  • Castorina, G., Persico, M., Zilio, M., Sangiorgio, S., Carabelli, L., & Consonni, G. (2018). The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response. Annals of Botany, 122, 227–238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, P., Sivakumar, R., Nandhitha, G. K., Vishnuveni, M., Boominathan, P., & Senthilkumar, M. (2017). Impact of PPFM and PGRs on seed germination, stress tolerant index and catalase activity in tomato (Solanum lycopersicum L.) under drought. International Journal of Current Microbiology and Applied Sciences, 6, 540–549.

    Article  CAS  Google Scholar 

  • Chen, Z., Wang, Z., Yang, Y., Li, M., & Zu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1–9.

    Article  CAS  Google Scholar 

  • Dash, P. K., Cao, Y., Jailani, A. K., Gupta, P., Venglat, P., Xiang, D., Rai, R., Sharma, R., Thirunavukkarasu, N., Abdin, M. Z., Yadava, D. K., Singh, N. K., Singh, J., Selvaraj, G., Deyholos, M., Kumar, P. A., & Datla, R. (2014). Genome-wide analysis of drought induced gene expression changes in flax Linum usitatissimum. GM Crops and Food, 5, 106–119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng, X. G., Zhu, T., Zhang, D. W., & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of Experimental Botany, 66, 6219–6232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhayal, S. S., Bagdi, D. L., Kakralya, B. L., Saharawat, Y. S., & Jat, M. L. (2012). Brassinolide induced modulation of physiology, growth and yield of wheat (Triticum aestivum L.) under water stress condition. Crop Research, 44, 14–19.

    Google Scholar 

  • Doležalová, J., Koudela, M., Augustinová, L., & Dubsky, M. (2016a). Brassinosteroide analogue effect on lettuce grown at different moisture levels. Journal of Applied Horticultre, 18, 183–186.

    Google Scholar 

  • Doležalová, J., Koudela, M., Sus, J., & Ptáček, V. (2016b). Effect of synthetic brassinolide on the yield of onion grown at two irrigation levels. Scientia Horticulturae, 202, 125–132.

    Article  CAS  Google Scholar 

  • Duan, F., Ding, J., Lee, D., Lu, X., Feng, Y., & Song, W. (2017). Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Frontiers in Plant Science, 8, 1909.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Khallal, S. M. (2002). The influence of some phyto-growth regulators on the activity of antioxidant system in maize plant under water stressed conditions. Bulletin of the Faculty of Science Assiut University, 31, 183–197.

    CAS  Google Scholar 

  • El-Khallal, S. M., & Nafie, F. M. (2000). Alleviation of drought damage for two cultivars of wheat seedlings by application of growth regulators brassinolide and uniconazole. Egypt Journal of Physiological Sciences, 24, 297–317.

    CAS  Google Scholar 

  • Eskandari, M. (2011). The effect of 28-Homobrassinolid in reducing the effects of drought in savory herbs. International Journal of Plant Physiology and Biochemistry, 3, 183–187.

    CAS  Google Scholar 

  • Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement of plants. Cellular and Molecular Life Sciences, 72, 673–689.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Khanam, S., Hasan, S. A., Ali, B., Hayat, S., & Ahmad, A. (2009). Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiologiae Plantarum, 31, 889–897.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Basra, S. M. A., & Islam-ud-din, I. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Fedina, E., Yarin, A., & Mukhitova, F. (2017). Brassinosteroid-induced changes of lipid composition in leaves of Pisum sativum L. during senescence. Steroids, 117, 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Y., Yin, Y., & Fei, S. (2015). Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science, 234, 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Filová, A. (2014). The responses of Helianthus annuus L. to foliar application of 28-homobrassinolide. Research Journal of Agriculture Science, 46, 226–235.

    Google Scholar 

  • Flexas, J., & Medrano, H. (2016). Photosynthetic response of C3 plants to drought. In A. Hemantaranjan (Ed.), Environmental physiology (pp. 231–308). Jodhpur: Scientific Publishers.

    Google Scholar 

  • García, A., Rodríguez, T., Héctor, E., & Núñez, M. (2005). Efecto del análogo de brasinoesteroide MH-5 en el crecimiento in vitro del arroz (Oryza sativa L.) en condiciones de déficit hídrico. Cultivos Tropicos, 26, 89–93.

    Google Scholar 

  • Ghasempour, H. R., Anderson, E. M., Gianello, R. D., & Gaff, D. F. (1998). Growth inhibitor effects on protoplasmic drought tolerance and protein synthesis in leaf cells of the resurrection grass, Sporobolus stapfianus. Plant Growth Regulation, 24, 179–183.

    Article  CAS  Google Scholar 

  • Gill, M. B., Cai, K. F., Zhang, G., & Zeng, F. (2017). Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. Plant Growth Regulation, 82, 447–455.

    Article  CAS  Google Scholar 

  • Gomes, M. M. A., Netto, A. T., Campostrini, E., Bressan-Smith, R., Zullo, M. A. T., Ferraz, T. M., Siqueira, L. N., Leal, N. R., & Núñez-Vázquez, M. (2013). Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theoretical and Experimental Plant Physiology, 25, 186–195.

    Google Scholar 

  • Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., & Fodor, J. (2018). Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. Physiologia Plantarum, 163, 155–169.

    Article  CAS  PubMed  Google Scholar 

  • Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarerjko, I. (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reactions to drought stress. Frontiers in Plant Science, 7, 1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gursude, A., Mandavia, C. K., Mandavia, M. K., Raval, L., & Bangar, S. (2014). Influence of brassinosteroids and gibberellic acid on biochemical parameters of chickpea (Cicer arietinum L.) under water stress. Indian Journal of Agricultural Biochemistry, 27, 227–230.

    CAS  Google Scholar 

  • Haider, M. S., Zhang, C., Kurjogi, M. M., Pervaiz, T., Zheng, T., Zhangg, C., Lide, C., Shangguan, L., & Fang, J. (2017). Insights into grapevine defense response against drought, as revealed by biochemical, physiological and RNA-Seq analysis. Scientific Reports, 7, 13134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, Y. J., Kim, Y. S., Hwang, O. J., Roh, J., Ganguly, K., Kim, S. K., Hwan, I., & Kim, J. L. (2017). Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One, 12, 0187378.

    Google Scholar 

  • Hashemi, N. B., Sadeghipour, O., & Asl, A. R. (2015). The study effect of brassinosteroid application on yield and yield components of cowpea (Vigna unguiculata) under water stress conditions. International Journal of Biology Pharmacy and Allied Science, 4, 593–605.

    CAS  Google Scholar 

  • Hemmati, K., Ebadi, A., Khomari, S., & Sedghi, M. (2018). Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. Journal of Plant Interactions, 13, 364–372.

    Article  CAS  Google Scholar 

  • Hnilička, F., Bláha, L., & Kadlec, P. (2008a). Influence of application of 24-epibrassinolide during seed wheat development at the stress conditions. Italian Journal of Agronomy, 3, 449–450.

    Google Scholar 

  • Hnilička, F., Hniličková, H., & Bláha, L. (2008b). The effect of 24-epibrassinolide on gases exchange in wheat. Italian Journal of Agronomy, 3, 451–452.

    Google Scholar 

  • Hnilička, F., Hniličková, H., & Bláha, L. (2008c). The influence of the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Italian Journal of Agronomy, 3, 453–454.

    Google Scholar 

  • Hnilicka, F., Hniličková, H., Martínková, J., & Ladislav, B. (2007). The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Research Communications, 35, 457–460.

    Article  CAS  Google Scholar 

  • Hnilicka, F., Hniličková, H., Martínková, J., Ladislav, B., & Kadlec, P. (2009). Impact of 24-epibrassinolide on chemical structure and energy content in wheat grain. Lietuvos Žemės Ukio Universitetas Mokslo Darbai, 83, 17–22.

    Google Scholar 

  • Hnilička, F., Koudela, M., Martínková, J., Hniličková, H., & Hejnak, V. (2010). Effect of water deficit and application of 24-epibrassinolide on gas exchange in cauliflower plants. Scientia Agriculturae Bohemica, 41, 15–20.

    Google Scholar 

  • Holá, D. (2011). Brassinosteroids and photosynthesis. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 143–192). Dordrecht/Heidelberg/London/New York: Springer.

    Chapter  Google Scholar 

  • Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., & Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232–237.

    Article  CAS  Google Scholar 

  • Jäger, C. E., Symons, G. M., Ross, J. J., & Reid, J. B. (2008). Do brassinosteroids mediate the water stress response? Physiologia Plantarum, 133, 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, A. (2011). The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 361–374). Dordrecht/Heidelberg/London/New York: Springer.

    Chapter  Google Scholar 

  • Janeczko, A., & Swaczynová, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.

    Article  CAS  Google Scholar 

  • Janeczko, A., Biesaga-Kościelniak, J., Oklešťková, J., Filek, M., Dziurka, M., Szarek-Łukaszewska, G., & Kościelniak, J. (2010). Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. Journal of Agronomy and Crop Science, 196, 311–321.

    CAS  Google Scholar 

  • Janeczko, A., Biesaga-Kościelniak, J., Dziurka, M., Oklestkova, J., Kocurek, M., Szarek-Lukaszewska, G., & Janeczko, Z. (2011a). Response of polish cultivars of soybean (Glycine max (L.) Merr.) to brassinosteroid application. Acta Scientiarum Polonorum Agriculture, 10, 33–50.

    Google Scholar 

  • Janeczko, A., Oklešťková, J., Pociecha, E., Kościelniak, J., & Mirek, M. (2011b). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 33, 1249–1259.

    Article  CAS  Google Scholar 

  • Janeczko, A., Gruszka, D., Pociecha, E., Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H. M., Kocurek, M., & Waligórski, P. (2016). Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry, 99, 126–141.

    Article  CAS  PubMed  Google Scholar 

  • Jangid, K. K., & Dwivedi, P. (2017). Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiol Plant, 39, 73.

    Article  CAS  Google Scholar 

  • Janiak, A., Kwasniewski, M., Sowa, M., Gajek, K., Żmuda, K., Kościelniak, J., & Szarejko, I. (2018). No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Frontiers in Plant Science, 8, 2112.

    Article  Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Khamsuk, O., Sonjaroon, W., Suwanwong, S., Jutamanee, K., & Suksamrarn, A. (2018). Effects of 24-epibrassinolide and the synthetic brassinosteroid mimic on chili pepper under drought. Acta Physiologiae Plantarum, 40, 106.

    Article  CAS  Google Scholar 

  • Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Kočová, M., Rothová, O., Holá, D., Kvasnica, M., & Kohout, L. (2010). The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid. Biologia Plantarum, 54, 785–788.

    Article  CAS  Google Scholar 

  • Koh, S., Lee, S. C., Kim, M. K., Koh, J. H., Lee, S., An, G., Choe, S., & Kim, S. R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65, 453–466.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A. A. A., Surendar, K. K., & Jalaluddin, S. M. (2017). Mitigation of drought through physiological modification in ragi under rainfed conditions. International Journal of Current Microbiology and Applied Sciences, 6, 1864–1869.

    Article  CAS  Google Scholar 

  • Kumar, M. S. S., Mawlong, I., Ali, K., & Tyagi, A. (2018). Regulation of phytosterol biosynthetic pathway during drought stress in rice. Plant Physiology and Biochemistry, 129, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Kumawat, B. L., Sharma, D. D., & Jat, S. C. (1997). Effect of brassinosteroid on yield and yield attributing characters under water deficit stress conditions in mustard (Brassica juncea (L.) Czern and Coss.). Annales Biologiques, 13, 91–93.

    Google Scholar 

  • Kuneš, I., Baláš, M., Linda, R., Gallo, J., & Nováková, O. (2016). Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. IForest, 10, 121–127.

    Article  Google Scholar 

  • Lal, S., Bagdi, D. L., Kakralya, B. L., Jat, M. L., & Sharma, P. C. (2013). Role of brassinolide in alleviating the adverse effect of drought stress on physiology, growth and yield of green gram (Vigna radiata L.) genotypes. Legume Research, 36, 359–363.

    Google Scholar 

  • Latha, P., & Vardhini, B. V. (2016). Effect of brassinolide on the growth of mustard crops grown in semi-arid tropics of Nizambad. International Journal of Plant and Soil Science, 9, 1–5.

    Article  Google Scholar 

  • Le, D. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham, L. H., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, P. L. S. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptomic analysis. PLoS One, 7, 49522.

    Article  CAS  Google Scholar 

  • Lee, J., Shim, D., Moon, S., Kim, H., Bae, W., Kim, K., Kim, Y. H., Rhee, S. K., Hong, C. P., Hong, S. Y., Lee, Y. J., Sung, J., & Ryu, H. (2018). Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato. Plant Physiology and Biochemistry, 127, 553–560.

    Article  CAS  PubMed  Google Scholar 

  • Li, K. R., & Feng, C. H. (2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 33, 1293–1300.

    Article  CAS  Google Scholar 

  • Li, K. R., Wang, H. H., Han, G., Wang, Q. J., & Fan, J. (2008). Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests, 35, 255–266.

    Article  Google Scholar 

  • Li, L., & van Staden, J. (1998a). Effect of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation, 24, 55–66.

    Article  Google Scholar 

  • Li, L., & van Staden, J. (1998b). Effects of plant growth regulators on drought resistance of two maize cultivars. South African Journal of Botany, 64, 116–120.

    Article  CAS  Google Scholar 

  • Li, L., van Staden, J., & Jäger, A. K. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regulation, 25, 81–87.

    Article  CAS  Google Scholar 

  • Li, X. J., Chen, X. J., Guo, X., Yin, L. L., Ahammed, G. J., Xu, C. J., Chen, K. S., Liu, C. C., Xia, X. J., Shi, K., Zhou, J., Zhou, Y. H., & Yu, J. Q. (2016). DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 14, 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. H., Liu, Y. J., Xu, X. L., Jin, M., An, L. Z., & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, 192–196.

    Article  CAS  Google Scholar 

  • Liu, J., Guo, C., Chen, Z. L., He, J. D., & Zou, Y. N. (2016). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emirates Journal of Food Agriculture, 28, 251–256.

    Article  Google Scholar 

  • Lima, J. V., & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23, 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahesh, K., Balaraju, P., Ramakrishna, B., & Rao, S. S. R. (2013). Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. Amer Journal of Plant Science, 4, 2305–2313.

    Article  CAS  Google Scholar 

  • Mazorra, L. M., & Núñez, M. (2003). Influencia de análogos de brasinoesteroides en la respuesta de plantas de tomate a diferentes estrés ambientales. Cultivos Tropicos, 24, 35–40.

    Google Scholar 

  • Mousavi, A. E., Manochehri Kalantari, K., & Jafari, S. R. (2009). Change of some osmolytes accumulation in water-stressed colza (Brassica napus L.) as affected by 24-epibrassinolide. Iranian Journal of Science and Technology Transactions A, 33, A1.

    Google Scholar 

  • Nishikawa, N., Toyama, S., Shida, A., & Futatsuya, F. (1994). The uptake and the transport of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. Journal of Plant Research, 107, 125–130.

    Article  CAS  Google Scholar 

  • Nolan, T., Chen, J., & Yen, Y. (2017). Cross-talk of brassinosteroid signaling in controlling growth and stress responses. The Biochemical Journal, 474, 2641–2661.

    Article  CAS  PubMed  Google Scholar 

  • Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Rerd, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2, 16114.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, M. J., Jain, R., Balbuena, T. S., Agrawal, G., Gasulla, F., & Thelen, J. J. (2011). Proteome analysis of leaves of the dessication-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry, 72, 1273–1284.

    Article  CAS  PubMed  Google Scholar 

  • Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 9, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., & Postma, J. A. (2012a). Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39, 839–850.

    Article  PubMed  Google Scholar 

  • Poorter, H., Fiorani, F., Stitt, M., Schurr, U., Finck, A., Gibon, Y., Usadel, B., Munns, R., Atkin, O.K., Tardieu, F¸ Pons, T.L. 2012b. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Functional Plant Biology 39: 821–838.

    Article  PubMed  Google Scholar 

  • Prusakova, L. D., Chizhova, S. I., Ageeva, L. F., Golantseva, E. N., & Yakovlev, A. F. (2000). Effect of epibrassinolide and Ekost on the drought resistance and productivity of spring wheat. Agrokhimija, 2000, 50–54.

    Google Scholar 

  • Pustovoitova, T. N., Zhdanova, N. E., & Zholkevich, V. N. (2001). Epibrassinolide increases plant drought resistence. Doklady. Biochemistry and Biophysics, 376, 36–38.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran, L. R., & Blake, T. J. (1999). New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. Journal of Plant Growth Regulation, 18, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Redjala, T., Zelko, I., Sterckeman, T., Legué, V., & Lux, A. (2011). Relationship between root structure and root cadmium uptake in maize. Environmental and Experimental Botany, 71, 241–248.

    Article  CAS  Google Scholar 

  • Rivero, R. M., Gimeno, J., van Deynze, A., Walia, H., & Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing P SARK ::IPT prevents the degradation of photosynthetic protein complexes during drought. Plant & Cell Physiology, 51, 1929–1941.

    Article  CAS  Google Scholar 

  • Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.

    Article  PubMed  CAS  Google Scholar 

  • Sağlam-Çağ, S. (2007). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnological Equipment, 21, 63–65.

    Article  Google Scholar 

  • Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6, 28298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam, R. K. (1994a). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.

    Article  CAS  Google Scholar 

  • Sairam, R. K. (1994b). Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress condition of two wheat varieties. Plant Growth Regulation, 14, 173–181.

    Article  CAS  Google Scholar 

  • Sairam, R. K., Shukla, D. S., & Deshmuk, P. S. (1996). Effect of homobrassinolide seed treatment on germination, α-amylase activity and yield of wheat under moisture stress conditions. Indian Journal of Plant Physiology, 1, 141–144.

    CAS  Google Scholar 

  • Savaliya, D. D., Mandavia, C. K., & Mandavia, M. K. (2013). Role of brassinolide on enzyme activities in groundnut under water deficit stress. Indian Journal of Agricultural Biochemistry, 26, 92–96.

    CAS  Google Scholar 

  • Schilling, G., Schiller, C., & Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and applications (pp. 208–219). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Sedghi, M., Sharifi, R. S., Pirzad, A. R., & Amanpour-Balaneji, B. (2012). Phytohormonal regulation of antioxidant systems in petals of drought stressed pot marigold (Calendula officinalis L.). Journal of Agriculture, Science and Technology, 14, 869–878.

    CAS  Google Scholar 

  • Shahana, T., Rao, P. A., Ram, S. S., & Sujhata, E. (2015). Mitigation of drought stress by 24-epibrassinolide and 28-homobrassinolide in pigeon pea seedlings. International Journal of Multidisciplinary and Current Research, 3, 904–911.

    Google Scholar 

  • Shakirova, F., Allagulova, C., Maslennikova, D., Fedorova, K., Yuldashev, R., Lubyanova, A., Bezrukova, M., & Avalbaev, A. (2016). Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry, 108, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Shamloo-Dashtpagerdi, R., Razi, H., & Ebrahimie, E. (2015). Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiology and Molecular Biology of Plants, 21, 329–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, J., Nakamura, S., & Ota, Y. (1993). Effect of epibrassinolide on gram (Cicer arietinum) plants grown under water stress in the juvenile stage. Indian Journal of Agricultural Sciences, 63, 395–397.

    CAS  Google Scholar 

  • Sivakumar, R., Nandhitha, G. K., Chandrasekaran, P., Boominathan, P., & Senthilkumar, M. (2017). Impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. International Journal of Current Microbiology and Applied Sciences, 6, 1640–1651.

    Article  CAS  Google Scholar 

  • Skirycz, A., & Inzé, D. (2010). More from less: Plant growth under limited water. Current Opinion in Plant Biology, 21, 197–203.

    CAS  Google Scholar 

  • Song, W. J., Zhou, W. J., Jin, Z. L., Zhang, D., Yoneyama, K., Takeuchi, V., & Joel, D. M. (2006). Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Australian Journal of Agricultural Research, 57, 1195–1201.

    Article  CAS  Google Scholar 

  • Symons, G. M., & Reid, J. B. (2004). Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiology, 135, 2196–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons, G. M., Ross, J. J., Jager, C. E., & Reid, J. B. (2008). Brassinosteroid transport. Journal of Experimental Botany, 59, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Talaat, N. B., & Shawky, B. T. (2016). Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. Journal of Plant Growth Regulation, 35, 518–533.

    Article  CAS  Google Scholar 

  • Talaat, N. B., Shawky, B. T., & Ibrahim, A. S. (2015). Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany, 113, 47–58.

    Article  CAS  Google Scholar 

  • Tang, S., Li, L., Wang, Y., Chen, Q., Zhang, W., Jia, G., Zhi, H., Zhao, B., & Diao, X. (2017). Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoidae grasses). Scientific Reports, 7, 10009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tůmová, L., Tarkowská, D., Řehořová, K., Marková, H., Kočová, M., Rothová, O., Čečetka, P., & Holá, D. (2018). Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS ONE, 13, 0197870.

    Article  CAS  Google Scholar 

  • Upreti, K. K., & Murti, G. S. R. (2004). Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biologia Plantarum, 48, 407–411.

    Article  CAS  Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2003). Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulation, 41, 25–31.

    Article  CAS  Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2005). Influence of brassinosteroids on germination and seedling growth of sorghum under water stress. Indian Journal of Plant Physiology, 10, 381–384.

    CAS  Google Scholar 

  • Vardhini, B. V., Sujatha, E., & Rao, S. S. R. (2011). Brassinosteroids: Alleviation of water stress in certain enzymes of sorghum seedlings. Journal of Phytology, 3, 38–43.

    Google Scholar 

  • Verma, J., Kakralya, B. L., & Jakhar, M. L. (2012). Effect of brassinolide on physiological aspects of chick pea (Cicer arietinum L.) under drought conditions. Journal of Plant Science and Research, 28, 151–155.

    Google Scholar 

  • Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45, 523–539.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Zheng, P., Meng, J., & Xi, Z. (2015). Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiologiae Plantarum, 37, 1729.

    Article  CAS  Google Scholar 

  • Wei, L. J., Deng, X. G., Zhu, T., Zheng, T., Li, P. X., Wu, J. Q., Zhang, D. W., & Li, H. H. (2015). Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Frontiers in Plant Science, 6, 982.

    PubMed  PubMed Central  Google Scholar 

  • Xiong, J. L., Kong, H. Y., Akram, N. A., Bai, X., Ashraf, M., Tan, R. Y., Zhu, H., Siddique, K. H. M., Xiong, Y. C., & Turner, N. C. (2016). 24-epibrassinolide increases growth, grain yield and β-ODAP production in seeds of well-watered and moderately waterstressed grass pea. Plant Growth Regulation, 78, 217–231.

    Article  CAS  Google Scholar 

  • Xu, H. L., Shida, A., Futatsuya, F., & Kumura, A. (1994a). Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 1. Effects on growth and survival. Japanese Journal of Crop Science, 63, 671–675.

    Article  CAS  Google Scholar 

  • Xu, H. L., Shida, A., Futatsuya, F., & Kumura, A. (1994b). Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 2. Physiological basis for drought resistance induced by exogenous epibrassinolide and abscisic acid. Japanese Journal of Crop Science, 63, 676–681.

    Article  CAS  Google Scholar 

  • Younesian, A., Norouzi, H. A., & Gholipoor, M. (2017a). Alleviation of drought stress effects on red bean by ultrasonication and foliar application of 24-epi-brassinolid. International Journal of Plant Production, 11, 505–513.

    Google Scholar 

  • Younesian, A., Norouzi, H. A., Gholipoor, M., & Soltani, A. (2017b). Consequences of ultrasonic waves radiation and 24-epi-brassinolid foliar application for reduction of water deficit stress on qualitative properties of red beans (Akhtar). Journal of Research in Ecology, 5, 686–699.

    Google Scholar 

  • Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, G. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126, 103–108.

    Article  CAS  Google Scholar 

  • Zafari, M., & Ebadi, A. (2016). Effects of water stress and brassinosteroids (24-epibrassinolide) on changes of some amino acids and pigments in safflower (Cartamus tinctorius L.). Journal of Current Research Science, S(1), 711–715.

    Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56, 257–264.

    Article  CAS  Google Scholar 

  • Zhao, G., Hu, H., Zhang, P., Su, X., & Zhao, H. (2017). Effects of 24-epibrassinolide on photosynthesis and Rubisco activase gene expression in Triticum aestivum L. seedlings under a combination of drought and heat stress. Plant Growth Regulation, 81, 377–384.

    Article  CAS  Google Scholar 

  • Zhou, X., Zhang, N., Yang, J., & Si, H. (2016). Functional analysis of potato CPD gene: A rate-limiting enzyme in brassinosteroid biosynthesis under polyethylene glycol-induced osmotic stress. Crop Science, 56, 2675–2687.

    Article  CAS  Google Scholar 

  • Zhu, J., Lu, P., Jiang, Y., Wang, M., & Zhang, L. (2014). Effects of brassinosteroid on antioxidant system in Salvia miltiorrhiza under drought stress. Journal of Research Agriculture and Animal Science, 2, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Hola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hola, D. (2019). Role of Brassinosteroids in the Plant Response to Drought: Do We Know Anything for Certain?. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_5

Download citation

Publish with us

Policies and ethics