Skip to main content

Brassinosteroids: The Promising Plant Growth Regulators in Horticulture

  • Chapter
  • First Online:

Abstract

Brassinosteroids (BS), a class of polyhydroxylated steroidal plant hormones were collectively named as ‘Brassins’ after their initial discovery from the pollen grains of Brassica napus. They occur in whole plant kingdom and almost all plant parts. Pollen and immature seeds are the richest sources of BS. A spectrum of physiological, biochemical and molecular responses in plants have been attributed to BS, which include shoot and root growth, fertility and seed germination, cell elongation, vascular differentiation, xylem formation in epicotyls, and also in the regulation of expression of several genes involved in xylem development. They also affect cotyledon growth, root elongation, leaf formation and growth, and plant biomass. Ethylene production is another important physiological response in plant that has been attributed to BS activity. They have also been found to protect plants from various abiotic and biotic stress factors, such as salt, temperature, water, heavy metals and pathogens. BS also enhance the yield of several cereals, legumes, oilseed crops and crops of horticultural importance. In horticultural crops, they favour fruit production and quality of the fruits. This chapter describes various studies wherein BS have been exploited to enhance the productivity of different horticultural crops. Most importantly, they are naturally occurring and eco-friendly, thus they can easily replace the hazardous chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam, G., & Schneider, B. (1999). Uptake, transport and metabolism. In A. Sakurai, T. Yokota, & S. D. Clouse (Eds.), Brassinosteroids – Steroidal plant hormones (pp. 113–136). Tokyo: Springer.

    Google Scholar 

  • Aghdam, M. S., Asghari, M., Farmani, B., Mohayeji, M., & Moradbeygi, H. (2012). Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Scientia Horticulturae, 144, 116–120.

    Article  CAS  Google Scholar 

  • Alam, M. M., Hayat, S., Ali, B., & Ahmad, A. (2007). Effect of 28-homobrassinolide treatment on nickel in Brassica juncea. Photosynthetica, 45, 139–142.

    Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2005). Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. General and Applied Plant Physiology, 31, 55–63.

    CAS  Google Scholar 

  • Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110, 267–273.

    CAS  Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L). Environmental and Experimental Botany, 59, 217–223.

    CAS  Google Scholar 

  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008a). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008b). r24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.

    CAS  PubMed  Google Scholar 

  • Aristeo-Cortes, P., Terrazas, T., Colinas León, T., & Larqué-Saavedra, A. (2003). Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Scientia Horticulturae, 97, 65–73.

    Article  CAS  Google Scholar 

  • Asatova, S. S. (1991). Effect of epibrassinolide on growth and development of vegetables. In Conference on brassinosteroids (2nd ed.). Minsk.

    Google Scholar 

  • Azpeitia, A., Chan, J., Saenz, L., & Oropeza, C. (2003). Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. The Journal of Horticultural Science and Biotechnol, 78, 591–596.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

    Article  CAS  Google Scholar 

  • Balmush, G. T., Russu, M. M., & Karabdzhak. (1995). Effect of epibrassinolide on tomato growth and development. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., pp. 22–23). Minsk.

    Google Scholar 

  • Bieberach, C. Y., León, B., Centurión, O. T., Ramírez, J. A., Gros, E., & Galagovsky, L. (2000). Estudios preliminares sobre el efecto de dos brasinoesteroides sintéticos sobre el crecimiento in vitro de yuca, ñame y piña. Anales de la Asociación Química Argentina, 88, 1–7.

    CAS  Google Scholar 

  • Bobrick, A. O. (1995). Application of brassinosteroids in potato breeding. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., p. 23). Minsk.

    Google Scholar 

  • Bombarely, A., Merchante, C., Csukasi, F., Cruz-Rus, E., Caballero, J. L., Medina-Escobar, N., Blanco-Portales, R., Botella, M. A., MunozBlanco, J., Sanchez-Sevilla, J. F., & Valpuesta, V. (2010). Generation and analysis of ESTs from strawberry (Fragaria×ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics, 11, 503–510.

    Article  Google Scholar 

  • Chai, Y. M., Zhang, Q., Tian, L., Li, C. L., Ling, Y. X., Qin, L., & Shen, Y. Y. (2013). Brassinosteroid is involved in strawberry fruit ripening. Journal of Plant Growth Regulation, 69, 63–69.

    Article  CAS  Google Scholar 

  • Churikova, V. V., & Derevshchukov, S. N. (1997). Registration trials of the growth regulator “Epin” on tomato and cucumber. Technical report of Voronezh State University.

    Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.

    Article  CAS  Google Scholar 

  • Esposito, D., Komarnytsky, S., Shapses, S., & Raskin, I. (2011). Anabolic effect of plant brassinosteroid. The FASEB Journal, 25, 3708–3719.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58, 9–17.

    Article  CAS  Google Scholar 

  • Fedina, E. O., Karimova, F. G., Tarchevsky, I. A., & Khripach, V. A. (2008). Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes. Russian Journal of Plant Physiology, 55, 193–200.

    Article  CAS  Google Scholar 

  • Fu, F. Q., Mao, W. H., Shi, K., Zhou, Y. H., Asami, T., & Yu, J. Q. (2008). A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 59, 2299–2308.

    Article  CAS  Google Scholar 

  • Genma, T. (1987). Methods of cultivating potatos with brassinolide-containing yield enhancer. PCT Int Appl WO 88 04, 890 [C.a. 110, 187813].

    Google Scholar 

  • Gomes, M. M. A., Campostrini, E., Leal, N. R., Viana, A. P., Ferraz, T. M., Siqueira, L. N., Rosa, R. C. C., Netto, A. T., Nunez-Vazquez, M., & Zullo, M. A. T. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Science Horticulture, 110, 235–240.

    Article  CAS  Google Scholar 

  • Hategan, L., Godza, B., & Szekeresm. (2010). Regulation of brassinosteroids signalling. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 57–82). Dordrecht: Springer.

    Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • Hola, D., Rothova, O., Kocova, M., Kohout, L., & Kvasnic, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.

    Article  CAS  Google Scholar 

  • Ikekawa, N., & Akutsu, T. (1987). Culturing method for spinach using brassinosteroid as growth promoters. Jpn. Kokai Tokkyo Koho. JP 63,239,201 [88,239,201] [C.A. 111, 52465].

    Google Scholar 

  • Ikekawa, N., & Nagai, T. (1987). Brassinosteroids fruiting hormones for melons. Jpn. Kokai Tokkyo Koho. JP 63,243,001 [88,243,0201] [C.A. 111, 129007].

    Google Scholar 

  • Iwahori, S., Tominaga, S., & Higuchi, S. (1990). Retardation of abscission of citrus leaf and fruitlet explants by brassinolide. Plant Growth Regulation, 9, 119–125.

    Article  CAS  Google Scholar 

  • Kang, Y. Y., & Guo, S. R. (2011). Role of brassinosteroids in horticultural crops. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 269–288). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kazakova, V. N., Karsunkina, N. P., & Sukhova, L. S. (1991). Effect of brassinolide and fusicoccin on potato productivity and tuber resistance to fungal diseases under storage. Izvestiia Timiryazevskoi sel’skokhoziaistvennoi Akademii, 0, 82–88.

    Google Scholar 

  • Kesy, J., Trzaskalsky, A., Galoch, E., & Kopcewicz, J. (2003). Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biologia Plantarum, 47, 597–600.

    Article  CAS  Google Scholar 

  • Khripach, V. A., Zhabinski, V. N., & de Groot, A. E. (1999). Practical applications and toxicology. In Brassinosteroids: A new class of plant hormones (pp. 325–345). London: Academic.

    Chapter  Google Scholar 

  • Korableva, N. P., Platonova, T. A., & Dogonadze, M. Z. (1998). Changes in ethylene biosynthesis in the meristems of potato tubers (Salanum tuberosum L.) under the action of brassinolide. Dokl. Akad. Nauk. Russia.

    Google Scholar 

  • Korableva, N. P., Platonova, T. A., Dogonadze, M. Z., & Evsunina, A. S. (2002). Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biologia Plantarum, 45, 39–43.

    Article  CAS  Google Scholar 

  • Kuraishi, S., Sakurai, N., Eun, J. S., & Sugiyama, K. (1991). Effect of brassinolide on level of indoleacetic acid and abscisic acid in squash hypocotyls. In H. G. Cuttler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and application (ACS symposium series) (Vol. 474, pp. 312–319). Washington, DC: American chemical Society.

    Chapter  Google Scholar 

  • Kurganskii, N. P. (1993). Application of “Apin” on sugar beet in 1991–1992. Technical report of experimental station on sugar beet. Belarus.

    Google Scholar 

  • Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathway. Planta, 213, 758–763.

    Article  CAS  Google Scholar 

  • Li, X., Ahammed, G. J., Li, Z. X., Zhang, L., Wei, J. P., Shen, C., Yan, P., Zhang, L. P., & Han, W. Y. (2016). Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Frontiers in Plant Science, 7, 1304. https://doi.org/10.3389/fpls.2016.01304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisso, J., Altmann, T., & Müssig, C. (2006). Metabolic changes in fruits of the tomatodx mutant. Phytochemistry, 67, 2232–2238.

    Article  CAS  Google Scholar 

  • Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., & Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 12, 105–115.

    Article  CAS  Google Scholar 

  • Mazzafera, P., & Zullo, M. A. T. (1990). Brassinosteroids on coffee. Bragantia, 49, 37–41.

    Article  CAS  Google Scholar 

  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., Kaneta, T., Kamiya, Y., Szekeres, M., & Boshop, G. J. (2005). Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42, 262–269.

    Article  CAS  Google Scholar 

  • Mori, K., Takematsu, T., Sakakibara, M., & Oshio, H. 1986. Homobrassinolide, and its production and use. US Patent. 4: 604,240.

    Google Scholar 

  • Mussig, C. (2005). Brassinosteroid-promoted growth. Plant Biology, 7, 110–117.

    Article  CAS  Google Scholar 

  • Nunez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.

    Article  CAS  Google Scholar 

  • Papadopoulou, E., & Grumet, R. (2005). Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. Horticultural Science, 40, 1763–1767.

    CAS  Google Scholar 

  • Peng, J., Tang, X., & Feng, H. (2004). Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Scientia Horticulturae, 101, 407–416.

    Article  CAS  Google Scholar 

  • Pereira-Netto, A., Cruz-Silva, C., Schaefer, S., Ramirez, J., & Galagovsky, L. (2006). Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees, 20, 286–291.

    Article  CAS  Google Scholar 

  • Ramos, L. C. S., Zullo, M. A. T., & Teixeira, J. P. F. (1987). Efeito de 24-epibrassinolídio em calos de Coffea stenophylla. In Proceedings of the 140 Congresso Brasileiro de Pesquisas Cafeeiras/1o Congresso Latinoamericano de Tecnologia Cafeeira (pp. 82–83). Campinas.

    Google Scholar 

  • Samira, I. M., Mansour-Gueddes, S. B., Dridi-Mouhandes, B., & Denden, M. (2012). 24-epibrassinolide enhances flower and fruit production of pepper (Capsicum annuum L.) under salt stress. Journal of Stress Physiology Biochemistry, 8, 224–233.

    Google Scholar 

  • Sasse, J. M. (2003). Physiological actions of brassinosteroids: An update. Plant Growth Regulation, 22, 276–288.

    Article  CAS  Google Scholar 

  • Savelieva, E. A., Goncharov, V. M., & Tseiko, Z. E. (1997). Effect of “Epin” on the crop and disease resistace of tomatoin green houses. Technical report of Gomel agricultural station, Belarus.

    Google Scholar 

  • Schaefer, S., Medeiro, S., Ramirez, J., Galagovsky, L., & Pereira-Netto, A. (2002). Brassinosteroid-driven enhancement of the in vitromultiplication rate for the marubakaido apple rootstock [Malus prunifolia(Willd.) Borkh]. Plant Cell Reports, 20, 1093–1097.

    Article  CAS  Google Scholar 

  • Schilling, G., Schiller, C., & Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities in sugar beet plants. In H. G. Cuttler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and application (ACS Symposium Series) (Vol. 474, pp. 208–219). Washington, DC: American chemical Society.

    Chapter  Google Scholar 

  • Schneider, B. (2002). Pathways and enzymes of brassinosteroid biosynthesis. In K. Esser, U. Lüttge, W. Beyschlag, & F. Hellwig (Eds.), Progress in botany (Vol. 63, pp. 286–306). Berlin: Springer.

    Chapter  Google Scholar 

  • Serna, M., Hernandez, F., Coll, F., Coll, Y., & Amoro, A. (2012). Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regulation, 68, 333–342.

    Article  CAS  Google Scholar 

  • Sirhindi, G. (2013). Brassinosteroids: Biosynthesis and role in growth, development, and thermotolerance responses. In G. R. Rout & A. B. Das (Eds.), Molecular stress physiology of plants (pp. 309–329). New Delhi: Springer.

    Chapter  Google Scholar 

  • Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids: Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.

    Article  CAS  Google Scholar 

  • Symons, G. M., Ross, J. J., Jager, C. E., & Reid, J. B. (2008). Brassinosteroid transport. Journal of Experimental Botany, 59, 17–24.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2004). Plant physiology (pp. 607–611). Sunderland: Sinauer Associates.

    Google Scholar 

  • Takematsu, T., & Izumi, K. (1985). Acceleration of plant growth in cultured soil. Jpn Kokai Tokkyo Koho JP 62 04,205 [87 04,205] [C.A. 107, 72876].

    Google Scholar 

  • Tang, W., Deng, Z., & Wang, Z.-Y. (2010). Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology, 13, 27–33.

    Article  CAS  Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61, 843–847.

    Article  Google Scholar 

  • Vedeneev, A. N., Deeva, V. P., & Khripach, V. A. (1995). Effect of epibrassinolide on sugar beet. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., p. 24). Minsk.

    Google Scholar 

  • Wang, Y. Q., Luo, W. H., & Zhao, Y. J. (1994). Effect of epibrassinolide on growth and fruit quality of water melon. Zhiwu Shenglixue Tangxun, 30, 423–425.

    CAS  Google Scholar 

  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nogues, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135–1143.

    Article  CAS  Google Scholar 

  • Yusuf, M., Fariduddin, Q., & Ahmad, A. (2012). 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology and Biochemistry, 57, 143–153.

    Article  CAS  Google Scholar 

  • Zaharah, S. S., Singh, Z., Symons, G. M., & Reid, J. B. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 31, 363–372.

    Google Scholar 

  • Zhu, Z., Zhang, Z., Qin, G., & Tian, S. (2010). Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 56, 50–55.

    Article  CAS  Google Scholar 

  • Zullo, M. A. T., & Adam, G. (2002). Brassinosteroid phytohormones – Structure, bioactivity and applications. Brazilian Journal of Plant Physiology, 14, 143–181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, B. (2019). Brassinosteroids: The Promising Plant Growth Regulators in Horticulture. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_12

Download citation

Publish with us

Policies and ethics