Skip to main content

Energy Production: Biomass – Starch, Cellulose, and Hemicellulose

  • Chapter
  • First Online:
Yeast Cell Surface Engineering

Abstract

Starch, cellulose, and hemicellulose are promising renewable feedstock from terrestrial plants for biofuel production. Cell surface engineering was applied to the construction of whole-cell biocatalyst for the direct production of ethanol from these polysaccharides by displaying enzymes on yeast cell surface. The environmental polysaccharides can be efficiently degraded into monosaccharides by the synergistic effects between the displayed enzymes. The generated monosaccharides are quickly incorporated into the cells and assimilated into ethanol by intracellular metabolic activities. In this chapter, ethanol production from starch, cellulose, and hemicellulose by surface-engineered yeasts is introduced, and the advantages of cell surface display of enzymes, such as their suitability for consolidated bioprocessing (CBP), are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Rhizopus raw starch degrading glucoamylase: its cloning and expression in yeast. Agric Biol Chem 50(4):957–964

    CAS  Google Scholar 

  • Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microbiol 81(1):59–66. https://doi.org/10.1128/AEM.02864-14

    Article  CAS  PubMed  Google Scholar 

  • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311. https://doi.org/10.1128/AEM.02522-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callens M, Tomme P, Kersters-Hilderson H, Cornelis R, Vangrysperre W, De Bruyne CK (1988) Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber. Biochem J 250(1):285–290

    Article  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68(10):5136–5141

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212

    Article  CAS  Google Scholar 

  • International Energy Agency (2017) World energy outlook 2017. http://www.iea.org/weo2017. Accessed 14 Nov 2017

  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70(9):5407–5414. https://doi.org/10.1128/AEM.70.9.5407-5414.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72(6):1136–1143. https://doi.org/10.1007/s00253-006-0402-x

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23(4):411–456

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33(1):1–9. https://doi.org/10.1007/s10529-010-0403-9

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2013) Arming technology in yeast–novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 3(3):632–650. https://doi.org/10.3390/biom3030632

    Article  Google Scholar 

  • Kuroda K, Ueda M (2014) Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology. Methods Mol Biol 1152:137–155. https://doi.org/10.1007/978-1-4939-0563-8_8

    Article  CAS  PubMed  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583. https://doi.org/10.1016/j.copbio.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53. https://doi.org/10.1007/s00253-009-2101-x

    Article  CAS  PubMed  Google Scholar 

  • Medve J, Ståhlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9):1064–1073. https://doi.org/10.1002/bit.260440907

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63(4):1362–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β -glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64(12):4857–4861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51(1):65–70

    Article  CAS  Google Scholar 

  • Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M (2013) Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol Prog 29(2):346–351. https://doi.org/10.1002/btpr.1700

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Takagi T, Motone K, Kuroda K, Ueda M (2017) Enhanced direct ethanol production by cofactor optimization of cell surface-displayed xylose isomerase in yeast. Biotechnol Prog 33(4):1068–1076. https://doi.org/10.1002/btpr.2478

    Article  CAS  PubMed  Google Scholar 

  • Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol 70(8):5037–5040. https://doi.org/10.1128/AEM.70.8.5037-5040.2004

    Article  CAS  Google Scholar 

  • Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306. https://doi.org/10.1016/j.copbio.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32. https://doi.org/10.1186/1475-2859-9-32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuroda, K. (2019). Energy Production: Biomass – Starch, Cellulose, and Hemicellulose. In: Ueda, M. (eds) Yeast Cell Surface Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-5868-5_2

Download citation

Publish with us

Policies and ethics