Skip to main content

Exploring the Beneficial Endophytic Microorganisms for Plant Growth Promotion and Crop Protection: Elucidation of Some Bioactive Secondary Metabolites Involved in Both Effects

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Endophytic microorganisms are ubiquitous colonizers of the inner plant tissues without normally causing any morphological changes or disease symptoms. Several molecular studies focused on endophytic bacteria or fungi revealed a diversity of species. Edaphic conditions and recognition traits required for a successful colonization of plant tissues by endophytes are described. Beneficial endophytes promote plant growth and/or protect their host against phytopathogens through the production of various bioactive secondary metabolites. Efficiency of endophytes and/or their extracellular metabolites for suppression of plant diseases and promotion of plant growth and yield was largely investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from Solanaceous crops. Int J Microbiol 2014:1–14

    Google Scholar 

  • Adhikari TB, Joseph CM, Yang GP, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    CAS  PubMed  Google Scholar 

  • Akram W, Anjum T, Ali B (2015) Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. Biol Control 60:271–280

    CAS  Google Scholar 

  • Algam SA, Guan-lin X, Coosemans J (2005) Delivery methods for introducing endophytic Bacillus into tomato and their effect on growth promotion and suppression of tomato wilt. Plant Pathol J 4:69–74

    Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    PubMed  Google Scholar 

  • Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149:57–64

    Google Scholar 

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G et al (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. J Appl Microbiol 112:159–174

    CAS  PubMed  Google Scholar 

  • Andargie M, Li L, Feng A, Zhu X, Li J (2015) Colonization of rice roots by a green fluorescent protein-tagged isolate of Ustilaginoidea virens. Am J Plant Sci 6:2272–2279

    CAS  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa. Appl Environ Microbiol 68:4906–4914

    PubMed  PubMed Central  Google Scholar 

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. App Environ Microbiol 45:1802–1807

    CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156

    CAS  PubMed  Google Scholar 

  • Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016a) Endophytic bacteria from Datura stramonium for Fusarium wilt suppression and tomato growth promotion. J Microb Biochem Technol 8:30–41

    Google Scholar 

  • Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016b) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems. J Phytopathol 164:811–824

    CAS  Google Scholar 

  • Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016c) Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci Technol 26:1139–1165

    Google Scholar 

  • Aydi Ben Abdallah R, Mejdoub-Trabelsi B, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016d) Isolation of endophytic bacteria from Withania somnifera and assessment of their ability to suppress Fusarium wilt disease in tomato and to promote plant growth. J Plant Pathol Microbiol 7:352–362

    Google Scholar 

  • Aydi Ben Abdallah R, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016e) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Google Scholar 

  • Aydi Ben Abdallah R, Nefzi A, Jabnoun-Khiareddine H, Messaoud C, Stedel C, Papadopoulou KK et al (2016f) A putative endophytic Bacillus cereus str. S42 from Nicotiana glauca for biocontrol of Fusarium wilt disease in tomato and gas chromatography-mass spectrometry analysis of its chloroform extract. Arch Phytopathol Plant Protect 49:343–361

    CAS  Google Scholar 

  • Aydi Ben Abdallah R, Mejdoub-Trabelsi B, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2017a) Use of endophytic bacteria naturally associated with Cestrum nocturnum for Fusarium wilt biocontrol and enhancement of tomato growth. Tunisian J Plant Prot 12:15–40

    Google Scholar 

  • Aydi Ben Abdallah R, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Papadopoulou KK et al (2017b) Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot 99:45–58

    CAS  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterisation of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–177

    Google Scholar 

  • Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    Google Scholar 

  • Balsanelli E, Serrato RV, de Baura V, Sassaki G, Yates MG, Rigo LU et al (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244

    CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397–2406

    CAS  Google Scholar 

  • Barker SJ, Edmonds-Tibbett TL, Forsyth LM, Klingler JP, Toussaint JP, Smith FA et al (2005) Root infection of the reduced mycorrhizal colonization (rmc) mutant of tomato reveals genetic interaction between symbiosis and parasitism. Physiol Mol Plant Pathol 67:277–283

    CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane- 1-carboxylate deaminase. Can J Microbiol 47:642–652

    CAS  PubMed  Google Scholar 

  • Bell CR, Dickie GA, Chan JWYF (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gal disease in planta. Am J Enol Vitic 46:499–508

    Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    CAS  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–67

    Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    CAS  PubMed  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450–466

    PubMed  PubMed Central  Google Scholar 

  • Bhuvaneswari S, Madhavan S, Panneerselvam A (2013) Enumeration of endophytic bacteria from Solanum trilobatum L. World J Pharm Res 3:2270–2279

    Google Scholar 

  • Bibi F, Yasir M, Song GC, Lee SY, Chung YR (2012) Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on Oomycetous plant pathogens. Plant Pathol J 28:20–31

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  PubMed  Google Scholar 

  • Botta AL, Santacecilia A, Ercole C, Cacchio P, Del Gallo M (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol 30:666–674

    CAS  Google Scholar 

  • Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197

    CAS  PubMed  Google Scholar 

  • Cai XC, Li H, Xue YR, Liu CH (2013) Study of endophytic Bacillus amyloliquefaciens CC09 andits antifungal CLPs. J Appl Biol Biotechnol 1:1–5

    Google Scholar 

  • Castro RA, Quecine MC, Lacava PT, Batista B, Luvizotto DM, Marcon J et al (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus 3:382–391

    PubMed  PubMed Central  Google Scholar 

  • Chelius MK, Triplet EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cretoiu MS, Kielak AM, WA A-S, Sϕrensen SJ, van Elsas JD (2012) Mining of unexplored habitats for novel chitinases-ChiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94:1347–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal J, Kulkarni N (2013) Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Curr Res Microbiol Biotechnol 1:62–69

    Google Scholar 

  • De Weert S, Kuiper I, Kamilova F, Mulders IHM, Bloemberg GV, Kravchenko L et al (2007) The role of competitive root tip colonization in the biological control of tomato foot and root rot. In: Chincolkar SB, Mukerji KG (eds) Biological control of plant diseases. The Haworth Press Inc, Oxford/New York, pp 103–122

    Google Scholar 

  • Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YM, Inoguez AL, Triplet EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59

    CAS  Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    PubMed  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunfield K, Germida J (2001) Diversity of bacterial communities in the rhizosphere and root interior of fi eld-grown genetically modify ed Brassica napus. FEMS Microbiol Ecol 38:1–9

    CAS  Google Scholar 

  • Dunne C, Crowley JJ, Moenne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    CAS  Google Scholar 

  • El-Mehalawy AA, Gebreel HM, Rifaat HM, El-Kholy IM, Humid AA (2008) Effect of antifungal compounds produced by certain bacteria on physiological activities of human and plant pathogenic fungi. J Appl Sci Res 4:425–432

    CAS  Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    CAS  PubMed  Google Scholar 

  • Fakhouri W, Buchenauer H (2002) Characteristics of fluorescent pseudomonas isolates towards controlling of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J Plant Dis Prot 110:143–156

    Google Scholar 

  • Fishal EM, Meon S, Yun WM (2010) Induction of tolerance to fusarium wilt and defense-related mechanisms in the plantlets of susceptible Berangan Banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agric Sci China 9:1140–1149

    Google Scholar 

  • Forchetti G, Asciarelli OM, Lemano SA, Emano D, Lvarez A, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    CAS  PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Mellado J, Sepuúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128

    Google Scholar 

  • Gaiero JR, Mccall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101:10107–10112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Overbeek LS, Vuurde JW, Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    CAS  PubMed  Google Scholar 

  • Gasser I, Cardinale M, Müller H, Heller S, Eberl L, Lindenkamp N et al (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136

    CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    CAS  PubMed  Google Scholar 

  • Gond SK, Marshall SB, Torresa MS, White JJF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2015) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech 5:653–661

    PubMed  Google Scholar 

  • Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829

    CAS  PubMed  Google Scholar 

  • Govindappa M, Prathap S, Vinay V, Channabasava R (2014) Chemical composition of methanol extract of endophytic fungi, Alternaria sp. of Tabebuia argentea and their antimicrobial and antioxidant activity. Int J Biol Pharm Res 5:861–869

    Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Hagelin G, Indrevoll B, Hoeg-Jensen T (2007) Use of synthetic analogues in confirmation of structure of the peptide antibiotics maltacines. Int J Mass Spectrom 268:254–264

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hammerschmidt R, Smith-Becker JA (2000) The role of salicylic acid in disease resistance. In: Slusarenko A, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publisher, Dordrecht, pp 37–53

    Google Scholar 

  • Han Q, Wu F, Wang X, Qi H, Shi L, Ren A et al (2015) The bacterial lipopeptide iturins induce Verticillium dahlia cell death by affecting fungal signaling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188

    CAS  PubMed  Google Scholar 

  • Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496

    CAS  PubMed  Google Scholar 

  • Huang CJ (2012) Dimethyl disulfide is an induced systemic resistance-elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310

    CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15:233–242

    CAS  PubMed  Google Scholar 

  • Hwang JS, You YH, Bae JJ, Khan SA, Kim JG, Choo YS (2011) Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J Coast Res 27:544–548

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178

    CAS  PubMed  Google Scholar 

  • Izhaki I, Fridman S, Gerchman Y, Halpern M (2013) Variability of bacterial community composition on leaves between and within plant species. Curr Microbiol 66:227–235

    CAS  PubMed  Google Scholar 

  • Jakobi M, Winkelmann G, Kaiser D, Kempler C, Jung G, Berg G et al (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104

    CAS  PubMed  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    CAS  PubMed  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    CAS  PubMed  Google Scholar 

  • Jasim B, Joseph AA, John J, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204

    CAS  PubMed  Google Scholar 

  • Ji X, Lu G, Gai Y, Gao H, Lu B, Kong L et al (2010) Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 10:243–254

    PubMed  PubMed Central  Google Scholar 

  • Kalai-Grami L, Saidi S, Bachkouel S, Ben Slimene I, Mnari-Hattab M, Hajlaoui MR et al (2014) Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum. Appl Biochem Biotechnol 174:365–375

    CAS  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    CAS  PubMed  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461

    PubMed  Google Scholar 

  • Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    CAS  PubMed  Google Scholar 

  • Khan Z, Doty S (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322:197–207

    CAS  Google Scholar 

  • Khan SA, Hamayun M, Rim SO, Lee IJ, Seu JC, Choo YS et al (2008) Isolation of endophytic fungi capable of plant growth promotion from monocots inhabited in the coastal sand dunes of Korea. J Life Sci 18:1355–1359

    Google Scholar 

  • Khan AR, Ullah I, Waqas M, Shahza R, Hong SJ, Park et al (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust Plant Pathol 28:21–26

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite what decides? Curr Opin Plant Biol 9:358–363

    PubMed  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6

    CAS  Google Scholar 

  • Kpomblekou AK, Tabatabai MA (2003) Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agric Ecosyst Environ 100:275–284

    Google Scholar 

  • Krause A, Bischoff B, Miché L, Battistoni F, Reinhold-Hurek B (2011) Exploring the function of alcohol dehydrogenases during the endophytic life of Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 24:1325–1332

    CAS  PubMed  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral HL, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    CAS  Google Scholar 

  • Kumar GA, Antony AR, Kannan VR (2015) Exploration of endophytic microorganisms from selected medicinal plants and their control potential to multi drug resistant pathogens. J Med Plants Stud 3:49–57

    CAS  Google Scholar 

  • Kuriakose GC, Singh S, Rajvanshi PK, Surin WR, Jayabaskaran C (2014) In Vitro cytotoxicity and apoptosis induction in human cancer cells by culture extract of an endophytic Fusarium solani strain isolated from Datura metel L. Pharm Anal Acta 5:293–101

    Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    CAS  Google Scholar 

  • Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312

    CAS  PubMed  Google Scholar 

  • Lepoivre P (2003) La lutte biologique en phytopathologie. In: Lepoivre P (ed) Phytopathologie: Bases moléculaires et biologiques des pathosystèmes et fondements des stratégies de lutte. De boeck & Larcier, Université Belgium, Brussels, pp 284–309

    Google Scholar 

  • Li H, Qing C, Zhang Y, Zhao Z (2005) Screening for endophytic fungi with antitumour and antifungal activities from Chinese medicinal plants. World J Microbiol Biotechnol 21:1515–1519

    Google Scholar 

  • Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008) Pestalotheols A–D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668

    CAS  PubMed  Google Scholar 

  • Li H, Wang X, Han M, Zhao Z, Wang M, Tang Q et al (2012) Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J Biotechnol 11:231–242

    CAS  Google Scholar 

  • Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185:554–567

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Ann Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    CAS  Google Scholar 

  • Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013) Microbial control of plant diseases. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 67–91

    Google Scholar 

  • Mabrouk AM, Kheiralla ZH, Hamed ER, Youssry AA. Abd El Aty A(2008) Production of some biologically active secondary metabolites from marine-derived fungus Varicosporina ramulosa. Malays J Microbiol 4:14–24

    Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

    CAS  PubMed  Google Scholar 

  • Mahdi T, Mohamed I, Yagi S (2014) Endophytic fungal communities associated with ethno-medicinal plants from Sudan and their antimicrobial and antioxidant prospective. J Forest Prod Indus 3:248–256

    Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I et al (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malfanova N, Lugtenberg B, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 15–37

    Google Scholar 

  • Manter DK, Delgado J, Holm DG, Stong R (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    PubMed  Google Scholar 

  • Marcos FCC, Lório RDPF, da Silveira APD, Ribeiro RV, Machado EC, Lagôa AMMDA (2016) Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75:1–9. Campinas

    Google Scholar 

  • McDouga R, Stewart A, Bradshaw R (2012) Transformation of Cyclaneusma minus with green fluorescent protein (GFP) to enable screening of fungi for biocontrol activity. Forests 23:83–94

    Google Scholar 

  • McInroy JA, Kloepper JW (1995) Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 41:895–901

    CAS  Google Scholar 

  • Mejdoub-Trabelsi B, Abdallah RAB, Ammar N, Kthiri Z, Hamada W, Daami-Remadi M (2016) Bio-suppression of Fusarium wilt disease in potato using nonpathogenic potato-associated fungi. J Plant Pathol Microbiol 7:347–356

    Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Bael SV, Arnold E, Hebbar P et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. BioControl 46:4–14

    Google Scholar 

  • Meneses CHSG, Rouws LFM, Simoes-Araujo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458

    CAS  PubMed  Google Scholar 

  • Messiha NAS, van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, van Bruggen AHC (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from rots of fieldgrown canola. FEMS Microbiol Ecol 42:399–407

    CAS  PubMed  Google Scholar 

  • Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294

    Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81

    CAS  PubMed  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandhini S, Sendhilvel V, Babu S (2012) Endophytic bacteria from tomato and their efficacy against Fusarium oxysporum f. sp. lycopersici, the wilt pathogen. J Biopest 5:178–185

    Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Google Scholar 

  • Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Biosci 18:66–70

    Google Scholar 

  • Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422

    CAS  Google Scholar 

  • Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm, Mafikeng, South Africa. Afr J Biotechnol 12:4105–4114

    CAS  Google Scholar 

  • Nimal Christhudas IVS, Praveen Kumar P, Agastian P (2012) Antimicrobial activity and HPLC analysis of tropane alkaloids in Streptomyces spp. isolated from Datura stramonium L. Asian J Pharm Clin Res 5:278–282

    Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang Y, Wang QY, HL J et al (2011) The plant growth-promoting rhizobacteria Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate and jasmonate/ethylene-dependent signalling pathways. Mol Plant-Microbe Interact 24:533–542

    CAS  PubMed  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant-Microbe Interact 13:430–438

    CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    CAS  PubMed  Google Scholar 

  • Orole OO, Adejumo TO (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973

    Google Scholar 

  • Patel HA, Patel RK, Khristi SK, Parikh K, Rajendran G (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J Biotechnol 2:37–52

    Google Scholar 

  • Paul NC, Ji SH, Deng JX, Yu SH (2013) Assemblages of endophytic bacteria in chili pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics J 6:441–448

    Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:1–10

    Google Scholar 

  • Perottoab S, Angelinic P, Bianciottob V, Bonfanteab P, Girlandaab M, Kulld T et al (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218

    Google Scholar 

  • Petersen PJ, Wang TZ, Dushin RG, Bradford PA (2004) Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptides derivate of the natural product mannopeptimycin alpha and other antimicrobial agents against gram-positive clinical isolates. Antimicrob Agents Chemother 48:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312

    PubMed  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain Bacillus cereus. Lett Appl Microbiol 25:284–288

    CAS  PubMed  Google Scholar 

  • Pliego C, De Weert S, Lamers G, De Vicente A, Bloemberg G, Cazorla FM et al (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304

    PubMed  Google Scholar 

  • Pradeepa V, Jennifer M (2013) Screening and characterization of endophytic bacteria isolated from Tabernaemontana divaricata plant for cytokinin production. Adv BioTech 13:12–17

    Google Scholar 

  • Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42:1144–1154

    CAS  Google Scholar 

  • Rakh RR, Raut LS, Dalvi SM, Manwar AV (2011) Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Recent Res Sci Technol 3:26–34

    Google Scholar 

  • Ramaiah N, Hill RT, Chun J, Ravel J, Matte MH, Straube WL et al (2000) Use of a ChiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 34:63–71

    CAS  PubMed  Google Scholar 

  • Ramyabharathi SA, Raguchander T (2014) Efficacy of secondary metabolites produced by Bacillus subtilis EPCO16 against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. J Mycol Plant Pathol 44:148–153

    Google Scholar 

  • Ray S, Singh V, Bisen K, Keswani C, Singh S, Singh HB (2017) Endophytomicrobiont: a multifaceted beneficial interaction. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, Wallingford, pp 218–233

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Google Scholar 

  • Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB et al (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS One 9:1–12

    Google Scholar 

  • Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008a) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodule of Kudzu (Pueraria thunbergiana) and their effect on wheat seedlings growth. Curr Microbiol 56:134–139

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S et al (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    CAS  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strobilifera. Appl Microbiol Biotechnol 85:371–381

    CAS  PubMed  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Wallingford

    Google Scholar 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK et al (2012) Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65:330–336

    CAS  PubMed  Google Scholar 

  • Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763

    CAS  PubMed  Google Scholar 

  • Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of rootlesion nematodes in the potato root zone. Plant Soil 262:241–249

    CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (2002) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369

    Google Scholar 

  • Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2005) Visualization of infection of an endophytic Actinomycete Streptomyces galbus in leaves of tissue-cultured Rhododendron. Actinomycetologica 19:7–12

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    CAS  PubMed  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl J Environ Microbiol 75:748–757

    CAS  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:1–15

    Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torimiro N, Okonji RE (2013) A comparative study of pectinolytic enzyme production by Bacillus species. Afr J Biotechnol 12:6498–6503

    Google Scholar 

  • Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the δ-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrencht, p 521–574

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense related proteins in infected plants. Ann Rev Phytopathol 44:135–162

    Google Scholar 

  • van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380

    PubMed  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    CAS  PubMed  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    CAS  PubMed  Google Scholar 

  • Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol 2014:1–5

    Google Scholar 

  • Vethavalli S, Sudha SS (2012) In vitro and in silico studies on biocontrol agent of bacterial strains against Fusarium oxysporum f. sp. lycopersici. Res Biotechnol 3:22–31

    Google Scholar 

  • Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N et al (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785. https://doi.org/10.1080/14786419.2017.1290624

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinins IS (eds) Environmental and microbial relationships: the Mycota IV. Springer, Berlin, pp 127–146

    Google Scholar 

  • Voisard C, Keel C, Hass D, Defago G (1989) Cyanide production by Pseudomonas fluorescens suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zeng Q, Zhang Z, Yan R, Zhu D (2010) Antagonistic bioactivity of an endophytic bacterium H-6. Afr Biotechnol 9:6140–6145

    Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani M, Bahmanyar M (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol 49:90–92

    Google Scholar 

  • Yoo JJ, Eom AH (2012) Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon mountain, Korea. Mycobiology 40:231–235

    PubMed  PubMed Central  Google Scholar 

  • You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ et al (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556

    PubMed  Google Scholar 

  • Yuan J, Raza W, Shen QR, Huang QW (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp cubense. Appl Environ Microbiol 78:5942–5944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM et al (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:1–8

    Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–882

    CAS  PubMed  Google Scholar 

  • Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP et al (2012) Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J Bacteriol 194:1280–1281

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydi Ben Abdallah, R., Jabnoun-Khiareddine, H., Daami-Remadi, M. (2019). Exploring the Beneficial Endophytic Microorganisms for Plant Growth Promotion and Crop Protection: Elucidation of Some Bioactive Secondary Metabolites Involved in Both Effects. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_16

Download citation

Publish with us

Policies and ethics