Skip to main content

Biomedical Instrumentation: Focus Toward Point-of-Care Devices

  • Chapter
Biomedical Engineering and its Applications in Healthcare

Abstract

Biomedical instrumentation (BMI) deals with the measuring, recording, and transmitting biological signals from and to the human body to enable development of new algorithms and instruments to solve health-related problems. Development of BMI involves interdisciplinary understanding in different fields such as engineering technologies, materials science, and medical science which finally aim to improve human health by timely diagnosis and suitable therapeutic measures. These have immense importance in medical procedures for data collection and their analysis to aid decision-making and planning of treatment regimen. Typical BMI assemblies consist of sensors to detect bioelectrical, biophysical, and biochemical parameters with a safe interface which couples the biological surface with arrangements to control different influencing parameters. Additionally, some of the BMI may have an actuator, which can deliver external agents via direct or indirect contact to help the therapeutic aspects of devices. Electronic interfaces are calibrated using computational units with different electrical characteristics like signal-to-noise ratio, efficiency, bandwidth, and safety. Other necessary components include the power supply, output unit which provides the display and storage of data. This review summarizes different technological interventions pertaining to the BMI, their classification, and applications in various diagnostic and therapeutic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah A, Ismael A, Rashid A, Abou-ElNour A, Tarique M (2015) Real time wireless health monitoring application using mobile devices. Int J Comput Netw Commun IJCNC 7(3):13–30

    Article  Google Scholar 

  • Alpert B (1996) Validation of CAS model 9010 automated blood pressure monitor: children/adult and neonatal studies. Blood Press Monit 1(1):69–73

    CAS  PubMed  Google Scholar 

  • Ã…mark M, Bergens T (2008) Auto-injector. U.S. Patent 7,442,185, issued October 28, 2008

    Google Scholar 

  • Anandanatarajan R (2011) Biomedical instrumentation and measurements. PHI Learning Pvt. Ltd, Delhi

    Google Scholar 

  • Antonescu-Turcu A, Parthasarathy S (2010) CPAP and bi-level PAP therapy: new and established roles. Respir Care 55(9):1216–1229

    PubMed  Google Scholar 

  • Anwar YA, Tendler BE, McCabe EJ, Mansoor GA, White WB (1997) Evaluation of the datascope accutorr plus according to the recommendations of the association for the advancement of medical instrumentation. Blood Press Monit 2(2):105–110

    CAS  PubMed  Google Scholar 

  • Aungsakul S, Phinyomark A, Phukpattaranont P, Limsakul C (2012) Evaluating feature extraction methods of Electrooculography (EOG) signal for human-computer interface. Procedia Eng 32:246–252

    Article  Google Scholar 

  • Bai J, Lin J (1999) A pacemaker working status telemonitoring algorithm. EEE Trans Inf Technol Biomed 3(3):197–204

    Article  CAS  Google Scholar 

  • Bansal A, Joshi R (2018) Portable out-of-hospital electrocardiography: a review of current technologies. J Arrhythm 34(2):129–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Basholli A, Lagkas T, Bath PA, Eleftherakis G (2018) Healthcare professionals’ attitudes towards remote patient monitoring through sensor networks. Paper presented at the 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom)

    Google Scholar 

  • Boonlert W, Lolekha PH, Kost GJ, Lolekha S (2003) Comparison of the performance of point-of-care and device analyzers to hospital laboratory instruments. Point Care 2(3):172–178

    Google Scholar 

  • Bortolotto LA, Henry O, Hanon O, Sikias P, Mourad J-J, Girerd X (1999) Validation of two devices for self-measurement of blood pressure by elderly patients according to the revised British Hypertension Society protocol: the Omron HEM-722C and HEM-735C. Blood Press Monit 4(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Bronzino JD (1999) Biomedical engineering handbook, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Burrin J, Alberti (1990) What is blood glucose: can it be measured? Diabet Med 7(3):199–206

    Article  CAS  PubMed  Google Scholar 

  • Butler SA, Khanlian SA, Cole LA (2001) Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem 47(12):2131–2136

    CAS  PubMed  Google Scholar 

  • Cai, X., Winarta, H., Vo, A., & Young, C. C. (2005). USPTO

    Google Scholar 

  • Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E (2012) Smart wearable systems: current status and future challenges. Artif Intell Med 56(3):137–156

    Article  PubMed  Google Scholar 

  • Chandran S, Singh R (2007) Comparison of various international guidelines for analytical method validation. Die Pharmazie-An Int J Pharm Sci 62(1):4–14

    CAS  Google Scholar 

  • Chaudhari RD, Joshi AB, Srivastava R (2012) Uric acid biosensor based on chemiluminescence detection using a nano-micro hybrid matrix. Sensors Actuators B Chem 173:882–889

    Article  CAS  Google Scholar 

  • Chaudhari RD, Joshi AB, Pandya K, Srivastava R (2016) pH Based Urea Biosensing Using Fluorescein Isothiocyanate (FITC)-Dextran Encapsulated Micro-Carriers of Calcium Alginate. Sens Lett 14(5):451–459

    Article  Google Scholar 

  • Chaudhari R, Joshi A, Srivastava R (2017) PH and urea estimation in urine samples using single fluorophore and ratiometric fluorescent biosensors. Sci Rep 7(1):5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M (2003) Medical device regulations: global overview and guiding principles. World Health Organization, Geneva

    Google Scholar 

  • Coyle S, Lau K-T, Moyna N, O’Gorman D, Diamond D, Di Francesco F et al (2010) BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370

    Article  PubMed  Google Scholar 

  • Curone D, Dudnik G, Loriga G, Luprano J, Magenes G, Paradiso R … Bonfiglio A (2007) Smart garments for safety improvement of emergency/disaster operators. Paper presented at the engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE

    Google Scholar 

  • Curone D, Secco EL, Tognetti A, Loriga G, Dudnik G, Risatti M et al (2010) Smart garments for emergency operators: the Proe TEX project. IEEE Trans Inf Technol Biomed 14(3):694–701

    Article  PubMed  Google Scholar 

  • DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55(1):455–472

    Article  CAS  PubMed  Google Scholar 

  • Drake D, Jennings DI, Cooper SD, Barrow-Williams TD, Corrigan JP, Lee RT, Whitaker D (2010) Auto injector: Google Patents

    Google Scholar 

  • Dym CL, Agogino AM, Eris O, Frey DD, Leifer LJ (2005) Engineering design thinking, teaching, and learning. J Eng Educ 94(1):103–120

    Article  Google Scholar 

  • Geller DE (2005) Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care 50(10):1313–1322

    PubMed  Google Scholar 

  • Gupta J, Prausnitz MR (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35(8):1405–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghi M, Thurow K, Stoll R (2017) Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare Inf Res 23(1):4–15

    Article  Google Scholar 

  • Harris LF, Castro-López V, Killard AJ (2013) Coagulation monitoring devices: past, present, and future at the point of care. TrAC Trends Anal Chem 50:85–95

    Article  CAS  Google Scholar 

  • Hendee WR, Chien S, Maynard CD, Dean DJ (2002) The National Institute of Biomedical Imaging and Bioengineering: history, status, and potential impact. Ann Biomed Eng 30(1):2–10

    Article  PubMed  Google Scholar 

  • Ho KM, Wong K (2006) A comparison of continuous and bi-level positive airway pressure non-invasive ventilation in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Crit Care 10(2):R49

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes W (1915) Blood pressure—its clinical significance. J Natl Med Assoc 7(1):30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hörmann C, Baum M, Putensen C, Mutz N, Benzer H (1994) Biphasic positive airway pressure (BIPAP)--a new mode of ventilatory support. Eur J Anaesthesiol 11(1):37–42

    PubMed  Google Scholar 

  • Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Nihei M, Abe K, Sasaki S, Minami N, Munakata M et al (1987) A finger volume-oscillometric device for monitoring ambulatory blood pressure: laboratory and clinical evaluations. Clin Exp Hyperten Part A Theory Pract 9(12):2001–2025

    Article  CAS  Google Scholar 

  • Jian, Cui, Gao Shumei, Song Yilin (2013) Development of simultaneous monitoring system for non-invasive blood pressure and blood oxygen saturation. In 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, Vol 2, pp 968–973. IEEE, 2013

    Google Scholar 

  • Joshi AK, Tomar A, Tomar M (2014) A review paper on analysis of electrocardiograph (ECG) signal for the detection of arrhythmia abnormalities. Int J Adv Res Electr Electron Instrum Eng 3(10):12466–12475

    Google Scholar 

  • Khandpur RS (2005) Biomedical instrumentation: technology and applications. Mcgraw-hill, New York

    Google Scholar 

  • Kiechle FL, Main RI (2000) Blood glucose: measurement in the point-of-care setting. Lab Med 31(5):276–282

    Article  Google Scholar 

  • King D (2014) Marketing wearable home baby monitors: real peace of mind? BMJ 349:g6639

    Article  PubMed  Google Scholar 

  • Kramer DB, Mitchell SL, Brock DW (2012) Deactivation of pacemakers and implantable cardioverter-defibrillators. Prog Cardiovasc Dis 55(3):290–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen GB, Nerhus K, Thue G, Sandberg S (2004) Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin Chem 50(6):1068–1071

    Article  CAS  PubMed  Google Scholar 

  • Le Brun P, De Boer A, Frijlink H, Heijerman H (2000) A review of the technical aspects of drug nebulization. Pharm World Sci 22(3):75–81

    Article  PubMed  Google Scholar 

  • Lecomte MM, Atkinson KR, Kay DP, Simons JL, Ingram JR (2013) A modified method using the SonoPrep® ultrasonic skin permeation system for sampling human interstitial fluid is compatible with proteomic techniques. Skin Res Technol 19(1):27–34

    Article  PubMed  Google Scholar 

  • Lee BE, Plitt S, Fenton J, Preiksaitis JK, Singh AE (2011) Rapid HIV tests in acute care settings in an area of low HIV prevalence in Canada. J Virol Methods 172(1–2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Lemelson JH (1998) Patient monitoring system: Google Patents

    Google Scholar 

  • Limmroth V, Reischl J, Mann B, Morosov X, Kokoschka A, Weller I, Schreiner T (2017) Autoinjector preference among patients with multiple sclerosis: results from a national survey. Patient Prefer Adherence 11:1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobodzinski SS, Laks MM (2012) New devices for very long-term ECG monitoring. Cardiol J 19(2):210–214

    Article  PubMed  Google Scholar 

  • Mahfouz MR, Gary To, Kuhn MJ (2012) Smart instruments: wireless technology invades the operating room. In 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), pp 33–36. IEEE, 2012

    Google Scholar 

  • Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3):354–381

    Article  Google Scholar 

  • Master AM, Dublin LI, Marks HH (1950) The normal blood pressure range and its clinical implications. J Am Med Assoc 143(17):1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Mills K (2005) The basics of electromyography. J Neurol Neurosurg Psychiatry 76(suppl 2):ii32–ii35

    PubMed  PubMed Central  Google Scholar 

  • Mitragotri S (2013) Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 65(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Monge-Pereira E, Molina-Rueda F, Rivas-Montero F, Ibáñez J, Serrano J, Alguacil-Diego I, Miangolarra-Page J (2017) Electroencephalography as a post-stroke assessment method: an updated review. Neurologia 32(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Munckton K, Ho K, Dobb G, Das-Gupta M, Webb S (2007) The pressure effects of facemasks during noninvasive ventilation: a volunteer study. Anaesthesia 62(11):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Murphy D, Pak Y, Cleary JP (2016) Pulse oximetry overestimates oxyhemoglobin in neonates with critical congenital heart disease. Neonatology 109(3):213–218

    Article  CAS  PubMed  Google Scholar 

  • Newman JD, Turner AP (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, E., Petrie, J., Littler, W., de Swiet, M., Padfield, P. L., Altman, D., … Atkins, N. (1993). The British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J Hypertens, 11(Suppl 2), S43-S62

    Google Scholar 

  • O’brien E, Waeber B, Parati G, Staessen J, Myers MG (2001) Blood pressure measuring devices: recommendations of the European society of hypertension. BMJ 322(7285):531

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Oliver N, Toumazou C, Cass A, Johnston D (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210

    Article  CAS  PubMed  Google Scholar 

  • Olson WH (1998) Basic concepts of medical instrumentation. In: Medical Instrumentation Application and Design, pp 1–55

    Google Scholar 

  • Panel BBR (2012) Guidelines for safe work practices in human and animal medical diagnostic laboratories. Morb Mortal Wkly Rep 61:1–102

    Google Scholar 

  • Parati G (2005) Blood pressure variability: its measurement and significance in hypertension. J Hypertens 23:S19–S25

    Article  CAS  Google Scholar 

  • Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ (1993) Human blood pressure determination by sphygmomanometry. Circulation 88(5):2460–2470

    Article  CAS  PubMed  Google Scholar 

  • Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation 111(5):697–716

    Article  PubMed  Google Scholar 

  • Plebani M (2002) Charting the course of medical laboratories in a changing environment. Clin Chim Acta 319(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Powell-Cope G, Nelson AL, Patterson ES (2008) Patient care technology and safety. In: Patient safety and quality: an evidence-based handbook for nurses. Agency for Healthcare Research and Quality (US)

    Google Scholar 

  • Powsner RA, Powsner ER (2008) Essential nuclear medicine physics. Wiley, New York

    Google Scholar 

  • Prasad J, Joshi A, Jayant RD, Srivastava R (2011) Cholesterol biosensors based on oxygen sensing alginate-silica microspheres. Biotechnol Bioeng 108(9):2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Pretto JJ, Roebuck T, Beckert L, Hamilton G (2014) Clinical use of pulse oximetry: Official guidelines from the Thoracic Society of Australia and New Zealand. Respirology 19(1):38–46

    Article  PubMed  Google Scholar 

  • Price CP, John AS, Hicks JM (2004) Point-of-care testing. AACC Press, Washington, DC

    Google Scholar 

  • Radder A, Hermans J (1990) The significance of body temperature, sedimentation, C-reactive protein, leukocyte count and differential for the diagnosis of infections in an internal medicine emergency department. Ned Tijdschr Geneeskd 134(52):2536–2540

    PubMed  Google Scholar 

  • Reeves-Hoche MK, Meck R, Zwillich CW (1994) Nasal CPAP: an objective evaluation of patient compliance. Am J Respir Crit Care Med 149(1):149–154

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Werner R, Pazzi N, Boukerche A (2010) Monitoring patients via a secure and mobile healthcare system. IEEE Wirel Commun 17(1):59

    Article  Google Scholar 

  • Renumadhavi C, Kumar SM, Ananth A, Srinivasan N (2006) A new approach for evaluating SNR of ECG signals and its implementation. Paper presented at the Proceedings of the 6th WSEAS international conference on simulation, modelling and optimization

    Google Scholar 

  • Riva G, Gorini A, Gaggioli A (2009) The Intrepid project-biosensor-enhanced virtual therapy for the treatment of generalized anxiety disorders. Stud Health Technol Inform 142(155):155

    Google Scholar 

  • Saquib N, Md Tarikul Islam Papon, Ahmad I, Rahman A (2015) Measurement of heart rate using photoplethysmography. In 2015 International Conference on Networking Systems and Security (NSysS), pp 1–6. IEEE, 2015

    Google Scholar 

  • Schmitt HJ, Schuetz WH, Proeschel PA, Jaklin C (1993) Accuracy of pulse oximetry in children with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth 7(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Shelley KH (2007) Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg 105(6):S31–S36

    Article  PubMed  Google Scholar 

  • Shephard MD (2011) Point-of-care testing and creatinine measurement. Clin Biochem Rev 32(2):109

    PubMed  PubMed Central  Google Scholar 

  • Singh M (2014) Introduction to biomedical instrumentation. PHI Learning Pvt. Ltd, Delhi

    Google Scholar 

  • Stauffer VL, Sides R, Lanteri-Minet M, Kielbasa W, Jin Y, Selzler KJ, Tepper SJ (2018) Comparison between prefilled syringe and autoinjector devices on patient-reported experiences and pharmacokinetics in galcanezumab studies. Patient Prefer Adherence 12:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Tusa JK, He H (2005) Critical care analyzer with fluorescent optical chemosensors for blood analytes. J Mater Chem 15(27–28):2640–2647

    Article  CAS  Google Scholar 

  • Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes F (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7):12305–12348

    Article  PubMed  PubMed Central  Google Scholar 

  • Vagott J, Parachuru R (2018) An overview of recent developments in the field of wearable smart textiles. J Text Sci Eng 8(368):2

    Google Scholar 

  • Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33(11):692–705

    Article  CAS  PubMed  Google Scholar 

  • Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, Martinez Maestro L et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258

    Article  CAS  PubMed  Google Scholar 

  • Webster JG (1997) Design of pulse oximeters. CRC Press, Boca Raton. ISBN 9780750304672

    Google Scholar 

  • Webster JG (2009) Medical instrumentation application and design. Wiley, Hoboken

    Google Scholar 

  • Welling DR, McKay PL, Rasmussen TE, Rich NM (2012) A brief history of the tourniquet. J Vasc Surg 55(1):286–290

    Article  PubMed  Google Scholar 

  • Wheeler LA (1998) Clinical laboratory instrumentation. In: Medical instrumentation: application and design, p 486

    Google Scholar 

  • Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10(5):4558–4576

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Shi B, Fan F, Wang X, Yan L, Yuan W et al (2014) In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater 26(33):5851–5856

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Choudhary, S., Pandey, G., Mukherjee, R., Joshi, A. (2019). Biomedical Instrumentation: Focus Toward Point-of-Care Devices. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_13

Download citation

Publish with us

Policies and ethics