Skip to main content

Parenteral Controlled and Prolonged Drug Delivery Systems: Therapeutic Needs and Formulation Strategies

  • Chapter
Novel Drug Delivery Technologies

Abstract

Parenteral delivery is the second leading drug delivery approach after oral delivery. With the current surge of targeted therapeutic (proteins and peptides) and novel formulation approaches, two major sectors of parenteral controlled drug delivery, prolonged release injectables and stimuli-controlled injectables, are projected to grow extensively in the coming two decades as indicated by the current regulatory product approval and industrial pipeline. This chapter discusses these two sectors with details on the impacted therapeutic disease area, potential drug candidates, advancements in manufacturing technologies, and formulation technologies. Moreover, a comprehensive account is also given on the current and next-generation injection devices. Detailed discussions will provide a thorough guide for the development of the parenteral-prolonged and controlled drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Class S (2004) Health care in focus. Chem Eng News Arch 82(49):18–29. https://doi.org/10.1021/cen-v082n049.p018

    Article  Google Scholar 

  2. Mullin R (2003) Drug development costs about $1.7 billion. Chem Eng News Arch 81(50):8. https://doi.org/10.1021/cen-v081n050.p008a

    Article  Google Scholar 

  3. Bekryl Market Analysts. Global sterile injectable market size analysis, 2018–2028. April 2018.

    Google Scholar 

  4. World Drug Report 2016 (2016) Chapter I Illicit drug markets: situation and trends. United Nations Office on Drugs and Crime. https://www.unodc.org/doc/wdr2016/WORLD_DRUG_REPORT_2016_web.pdf. Accessed 22 Oct 2018

  5. Baser O, Chalk M, Fiellin DA, Gastfriend DR (2011) Cost and utilization outcomes of opioid-dependence treatments. Am J Manag Care 17(Suppl 8):S235–S248

    PubMed  Google Scholar 

  6. Global status report on alcohol and health (2018) World Health Organization. Sept 2018. http://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf?ua=1. Accessed 23 Oct 2018.

  7. Weinstein AM, Gorelick DA (2011) Pharmacological treatment of cannabis dependence. Curr Pharm Des 17(14):1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dolgin E (2018) What legal weed in Canada means for science. Nature 562(7727):327–330. https://doi.org/10.1038/d41586-018-07037-1

    Article  CAS  PubMed  Google Scholar 

  9. Allsop DJ, Copeland J, Lintzeris N, Dunlop AJ, Montebello M, Sadler C et al (2014) Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiat 71(3):281–291. https://doi.org/10.1001/jamapsychiatry.2013.3947

    Article  CAS  Google Scholar 

  10. Lung Cancer Prevention and Early Detection – Lung Cancer Risk Factors. American Cancer Society. Feb 2016. https://www.cancer.org/cancer/lung-cancer/prevention-and-early-detection/risk-factors.html. Accessed 22 Oct 2018

  11. Health Risks of Smokeless Tobacco. American Cancer Society. Nov 2015. https://www.cancer.org/cancer/cancer-causes/tobacco-and-cancer/smokeless-tobacco.html#references. Accessed 22 Oct 2018

  12. Nicotine Replacement Therapy for Quitting Tobacco. American Cancer Society. Jan 2017. https://www.cancer.org/healthy/stay-away-from-tobacco/guide-quitting-smoking/nicotine-replacement-therapy.html. Accessed 22 Oct 2018

  13. Cahill K, Lindson-Hawley N, Thomas KH, Fanshawe TR, Lancaster T (2016) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 5:CD006103. https://doi.org/10.1002/14651858.CD006103.pub7

    Article  Google Scholar 

  14. McDonough M (2015) Update on medicines for smoking cessation. Aust Prescr 38(4):106–111

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kerrigan D, Mantsios A, Gorgolas M, Montes M-L, Pulido F, Brinson C et al (2018) Experiences with long acting injectable ART: a qualitative study among PLHIV participating in a phase II study of cabotegravir + rilpivirine (LATTE-2) in the United States and Spain. PLoS One 13(1):e0190487. https://doi.org/10.1371/journal.pone.0190487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A phase 2b/3 double blind safety and efficacy study of injectable cabotegravir compared to daily oral tenofovir disoproxil fumarate/emtricitabine (TDF/FTC), for pre-exposure prophylaxis in HIV-uninfected cisgender men and transgender women who have sex with men. ClinicalTrials.gov 2016. https://www.clinicaltrials.gov/ct2/show/NCT02720094?term=NCT02720094&rank=1

  17. A phase IIa study to evaluate the safety, tolerability and pharmacokinetics of the investigational injectable HIV integrase inhibitor, GSK1265744, in HIV-uninfected men and women. ClinicalTrials.gov 2014. https://www.clinicaltrials.gov/ct2/show/NCT02178800?term=HPTN077&rank=1

  18. Phase II safety and acceptability of an investigational injectable product, TMC278 LA, for pre-exposure prophylaxis (PrEP). ClinicalTrials.gov (2014). clinicaltrials.gov/ct2/show/NCT02165202?term=HPTN+076&rank=1

  19. Kovarova M, Benhabbour SR, Massud I, Spagnuolo RA, Skinner B, Baker CE et al (2018) Ultra-long-acting removable drug delivery system for HIV treatment and prevention. Nat Commun 9(1):4156. https://doi.org/10.1038/s41467-018-06490-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Partsch CJ, Sippell WG (2001) Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum Reprod Update 7(3):292–302. https://doi.org/10.1093/humupd/7.3.292

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Li Y, Yang CL (2014) Gonadotropin releasing hormone agonist treatment to increase final stature in children with precocious puberty: a meta-analysis. Medicine 93(27):e260. https://doi.org/10.1097/md.0000000000000260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vercellini P, Buggio L, Berlanda N, Barbara G, Somigliana E, Bosari S (2016) Estrogen-progestins and progestins for the management of endometriosis. Fertil Steril 106(7):1552–71 e2. https://doi.org/10.1016/j.fertnstert.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  23. Global report on diabetes (2016) World Health Organization. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf. Accessed 22 Oct 2018

  24. Donner T (2015) Insulin – pharmacology, therapeutic regimens and principles of intensive insulin therapy. [Updated 2015 Oct 12]. Endotext. South Dartmouth (MA): MDText.com, Inc

    Google Scholar 

  25. Mental health action plan 2013–2020 (2013) World Health Organization. http://www.who.int/iris/bitstream/10665/89966/1/9789241506021_eng.pdf?ua=1. Accessed 22 Oct 2018

  26. Mental disorders Fact sheet (2018 Apr) World Health Organization. http://www.who.int/en/news-room/fact-sheets/detail/mental-disorders. Accessed 22 Oct 2018

  27. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21492

    Google Scholar 

  28. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159(1):14–26. https://doi.org/10.1016/j.jconrel.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  29. Carr DB, Cohen RI (2017) Are perioperative opioids obsolete? In: Proceedings of an IASP Acute Pain Special Interest Group Satellite Symposium September 25, 2016 Yokohama, Japan. PAIN Reports 2(4):e604. https://doi.org/10.1097/pr9.0000000000000604.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Werner MU, Kongsgaard UE (2014) I. Defining persistent post-surgical pain: is an update required? Br J Anaesth 113(1):1–4. https://doi.org/10.1093/bja/aeu012

    Article  CAS  PubMed  Google Scholar 

  31. Lavand’homme P, Pogatzki-Zahn E (2017) Fact sheet no. 4 chronic postsurgical pain: definition, impact, and prevention. International Association for the Study of Pain. http://www.iasp-pain.org/files/2017GlobalYear/FactSheets/4.%20Chronic%20Postsurgical%20Pain.LavandHomme-Zahn-EE_1485789834697_3.pdf. Accessed 22 Oct 2018

  32. Shargel L, Andrew B, Wu-Pong S (2004) Chapter 17: modified-release drug products: introduction. In: Applied biopharmaceutics & pharmacokinetics, 5th edn. Appleton & Lange, Stamford

    Google Scholar 

  33. Oriowo MA, Landgren BM, Stenstrom B, Diczfalusy E (1980) A comparison of the pharmacokinetic properties of three estradiol esters. Contraception 21(4):415–424

    Article  CAS  PubMed  Google Scholar 

  34. Sanrame CN, Remenar JF, Blumberg LC, Waters J, Dean RL, Dong N et al (2014) Prodrugs of Pioglitazone for extended-release (XR) injectable formulations. Mol Pharm 11(10):3617–3623. https://doi.org/10.1021/mp500359a

    Article  CAS  PubMed  Google Scholar 

  35. Kostanski JW, Matsuda T, Nerurkar M, Naringrekar VH, inventors; Otsuka Pharmaceutical, assignee (2011) Controlled release sterile injectable aripiprazole formulation and method patent United States patent US8030313 B2

    Google Scholar 

  36. Francois MKJ, Dries WMAC, Basstanie EDG, inventors; Janssen Pharmaceutica, assignee (2003) Aqueous suspensions of submicron 9-hydroxyrisperidone fatty acid esters patent United States patent US6555544 B2

    Google Scholar 

  37. Blumberg LC, Zeidan TA, Maddaford A, Warren NC, Hutchison P (2013) Novel N-5-(acyloxyalkoxy)carbonyl prodrugs of olanzapine with physicochemical properties for extended-release. RSC Adv 3(37):16270–16278. https://doi.org/10.1039/C3RA41967C

    Article  CAS  Google Scholar 

  38. Remenar JF (2014) Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics. Mol Pharm 11(6):1739–1749. https://doi.org/10.1021/mp500070m

    Article  CAS  PubMed  Google Scholar 

  39. Paquette SM, Dawit H, Hickey MB, Merisko-Liversidge E, Almarsson O, Deaver DR (2014) Long-acting atypical antipsychotics: characterization of the local tissue response. Pharm Res 31(8):2065–2077. https://doi.org/10.1007/s11095-014-1308-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Angst MS, Drover DR (2006) Pharmacology of drugs formulated with DepoFoam™. Clin Pharmacokinet 45(12):1153–1176

    Article  CAS  PubMed  Google Scholar 

  41. Garcia LD, Zhu L, Lambert WJ, Patou G, inventors; Pacira Pharmaceuticals, Inc., assignee (2012) Sustained release formulation of a non-steroidal anti-inflammatory drug

    Google Scholar 

  42. Schutt EG, Mcguire RW, Walters PA, Los KD, inventors; Pacira Pharmaceuticals, Inc., assignee (2013) Method for formulating large diameter synthetic membrane vesicles

    Google Scholar 

  43. Spector MS, Zasadzinski JA, Sankaram MB (1996) Topology of multivesicular liposomes, a model biliquid foam. Langmuir 12(20):4704–4708. https://doi.org/10.1021/la960218s

    Article  CAS  Google Scholar 

  44. Mantripragada S (2002) A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res 41(5):392–406

    Article  CAS  PubMed  Google Scholar 

  45. Willis RC, inventor DepoTech Corp, assignee (1999) Method for utilizing neutral lipids to modify in vivo release from multivesicular liposomes patent United States patent US 5,891,467, April 6

    Google Scholar 

  46. Sankaram M, Kim S, inventors; SkyePharma Inc, assignee (2000) Multivesicular liposomes with controlled release of encapsulated biologically active substances. Patent United States patent US 6,132,766, October 17

    Google Scholar 

  47. US Food and Drug Administration (2011) Chemistry review #2 NDA 22496 exparel (bupivacaine) liposomal injection US FDA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022496Orig1s000ChemR.pdf. Accessed 28 Oct 2018

  48. Pacira Pharmaceuticals Inc (2008) Product label NDA 21–671/S-020 DEPODUR – morphine sulfate injection, lipid complex US Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021671s020lbl.pdf. Accessed 28 Oct 2018

  49. Mont MA, Beaver WB, Dysart SH, Barrington JW, Del Gaizo DJ (2018) Local infiltration analgesia with liposomal bupivacaine improves pain scores and reduces opioid use after total knee arthroplasty: results of a randomized controlled trial. J Arthroplast 33(1):90–96. https://doi.org/10.1016/j.arth.2017.07.024

    Article  Google Scholar 

  50. Gorfine SR, Onel E, Patou G, Krivokapic ZV (2011) Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Dis Colon Rectum 54(12):1552–1559. https://doi.org/10.1097/DCR.0b013e318232d4c1

    Article  PubMed  Google Scholar 

  51. Lambrechts M, O’Brien MJ, Savoie FH, You Z (2013) Liposomal extended-release bupivacaine for postsurgical analgesia. Patient Prefer Adherence 7:885–890. https://doi.org/10.2147/PPA.S32175

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barrington JW, Emerson RH, Lovald ST, Lombardi AV, Berend KR (2017) No difference in early analgesia between liposomal bupivacaine injection and intrathecal morphine after TKA. Clin Orthop Relat Res 475(1):94–105. https://doi.org/10.1007/s11999-016-4931-z

    Article  PubMed  Google Scholar 

  53. Schwarzkopf R, Drexler M, Ma MW, Schultz VM, Le KT, Rutenberg TF et al (2016) Is there a benefit for liposomal bupivacaine compared to a traditional periarticular injection in total knee arthroplasty patients with a history of chronic opioid use? J Arthroplast 31(8):1702–1705. https://doi.org/10.1016/j.arth.2016.01.037

    Article  Google Scholar 

  54. Dasta J, Ramamoorthy S, Patou G, Sinatra R (2012) Bupivacaine liposome injectable suspension compared with bupivacaine HCl for the reduction of opioid burden in the postsurgical setting. Curr Med Res Opin 28(10):1609–1615. https://doi.org/10.1185/03007995.2012.721760

    Article  CAS  PubMed  Google Scholar 

  55. Dorigo O, Oza AM, Tanyi JL, Strauss J, Pejovic T, Ghamande S et al (2018) 87PNew clinical data from the DeCidE1 trial: results on DPX-Survivac, low dose cyclophosphamide (CPA), and epacadostat (INCB024360) in subjects with advanced recurrent epithelial ovarian cancer. Ann Oncol 29(suppl_10.):mdy487.018-mdy487.018). https://doi.org/10.1093/annonc/mdy487.018

    Article  Google Scholar 

  56. Langley JM, MacDonald LD, Weir GM, MacKinnon-Cameron D, Ye L, McNeil S et al (2018) A respiratory syncytial virus vaccine based on the small hydrophobic protein ectodomain presented with a novel lipid-based formulation is highly immunogenic and safe in adults: a first-in-humans study. J Infect Dis 218(3):378–387. https://doi.org/10.1093/infdis/jiy177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown RG, Pohajdak W, Kimmins WC, inventors; ImmunoVaccine Technologies Inc., assignee (2000) Vaccines with enhanced immune response and methods for their preparation patent United States patent US6793923B2

    Google Scholar 

  58. Brewer KD, Weir GM, Dude I, Davis C, Parsons C, Penwell A et al (2018) Unique depot formed by an oil based vaccine facilitates active antigen uptake and provides effective tumour control. J Biomed Sci 25(1):7. https://doi.org/10.1186/s12929-018-0413-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karkada M, Quinton T, Blackman R, Mansour M (2013) Tumor inhibition by DepoVax-based cancer vaccine is accompanied by reduced regulatory/suppressor cell proliferation and tumor infiltration. ISRN Oncol 2013:13. https://doi.org/10.1155/2013/753427

    Article  CAS  Google Scholar 

  60. Mansour M, Sammatur L, MacDonald LD, Karkada M, Weir GM, Fuentes-Ortega A, inventors; ImmunoVaccine Technologies Inc., assignee (2008) Compositions comprising liposomes, an antigen, a polynucleotide and a carrier comprising a continuous phase of a hydrophobic substance patent United States patent US20110070298A1

    Google Scholar 

  61. Brewer KD, Lake K, Pelot N, Stanford MM, DeBay DR, Penwell A et al (2014) Clearance of depot vaccine SPIO-labeled antigen and substrate visualized using MRI. Vaccine 32(51):6956–6962. https://doi.org/10.1016/j.vaccine.2014.10.058

    Article  CAS  PubMed  Google Scholar 

  62. Laffont CM, Gomeni R, Zheng B, Heidbreder C, Fudala PJ, Nasser AF (2015) Population pharmacokinetic modeling and simulation to guide dose selection for RBP-7000, a new sustained-release formulation of risperidone. J Clin Pharmacol 55(1):93–103. https://doi.org/10.1002/jcph.366

    Article  CAS  PubMed  Google Scholar 

  63. Rademacher KH, Vahdat HL, Dorflinger L, Owen DH, Steiner MJ (2014) Global introduction of a low-cost contraceptive implant. In: Critical issues in reproductive health. Springer, Dordrecht, pp 285–306

    Chapter  Google Scholar 

  64. Brache V (2014) WHO symposium WHO. Background and study methodology of a multicentre randomized clinical trial of two implantable contraceptives for women: jadelle and implanon. Eur J Contracept Reprod Health Care 19(1):S44

    Google Scholar 

  65. Bennink H (2000) The pharmacokinetics and pharmacodynamics of Implanon, a single-rod etonogestrel contraceptive implant. Eur J Contracept Reprod Health Care 5:12–20

    CAS  PubMed  Google Scholar 

  66. Uhm S, Pope R, Schmidt A, Bazella C, Perriera L (2016) Home or office etonogestrel implant insertion after pregnancy: a randomized trial. Contraception 94(5):567–571

    Article  CAS  PubMed  Google Scholar 

  67. Wong I, Teoh S, Yeoh A, Lingam G (2013) Sustained-release ganciclovir implant as prophylaxis for cytomegalovirus retinitis in a child undergoing bone marrow transplantation. Eye 27(7):890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schlegel P (2009) A review of the pharmacokinetic and pharmacological properties of a once-yearly administered histrelin acetate implant in the treatment of prostate cancer. BJU Int 103:7–13

    Article  CAS  PubMed  Google Scholar 

  69. Shi Y, Li L (2005) Current advances in sustained-release systems for parenteral drug delivery. Expert Opin Drug Deliv 2(6):1039–1058

    Article  CAS  PubMed  Google Scholar 

  70. Aoki T, Nishikawa R, Sugiyama K, Nonoguchi N, Kawabata N, Mishima K et al (2014) A multicenter phase I/II study of the BCNU implant (Gliadel® wafer) for Japanese patients with malignant gliomas. Neurol Med Chir 54(4):290–301

    Article  Google Scholar 

  71. Inc. S-aC (2015) Product monograph, PrSUPREFACT® Buserelin Acetate. 2905 Place Louis-R.-Renaud, Laval (Québec) H7V 0A3. http://products.sanofi.ca/en/suprefact.pdf. Accessed 05 Jan 2019

  72. Henry RR, Rosenstock J, Logan D, Alessi T, Luskey K, Baron MA (2014) Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complicat 28(3):393–398

    Article  Google Scholar 

  73. Yue B, Brendel R, Lukitsch A, Prentice T, Doty B (2017) Solubility and stability of baclofen 3 mg/mL intrathecal formulation and its compatibility with implantable programmable intrathecal infusion systems. Neuromodulation 20(4):397–404

    Article  PubMed  Google Scholar 

  74. Kumar A, Pillai J (2018) Implantable drug delivery systems: an overview. In: Nanostructures for the engineering of cells, tissues and organs. Elsevier, Oxford, pp 473–511

    Chapter  Google Scholar 

  75. Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama F, Gomes A et al (2015) Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polym Test 44:234–241

    Article  CAS  Google Scholar 

  76. Tian W, Mahmoudi M, Lhermusier T, Kiramijyan S, Chen F, Torguson R et al (2016) The influence of advancing age on implantation of drug-eluting stents. Catheter Cardiovasc Interv 88(4):516–521

    Article  PubMed  Google Scholar 

  77. Dunn RL, English JP, Cowsar DR, Vanderbilt DP, inventors; Atrix Laboratories Inc assignee (1988–1994) Biodegradable in-situ forming implants and methods of producing the same patent US Patent nos. US4938763B1, US07513782, US07788032, US07788159, US08210891

    Google Scholar 

  78. Chen S, Pieper R, Webster DC, Singh J (2005) Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 288(2):207–218

    Article  CAS  PubMed  Google Scholar 

  79. Loh XJ, Goh SH, Li J (2007) New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8(2):585–593. https://doi.org/10.1021/bm0607933

    Article  CAS  PubMed  Google Scholar 

  80. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD et al (2008) Thermoreversible gel–sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater 84B(1):165–175. https://doi.org/10.1002/jbm.b.30858

    Article  CAS  Google Scholar 

  81. Zhai Y, Deng L, Xing J, Liu Y, Zhang Q, Dong A (2009) A new injectable thermogelling material: methoxy poly(ethylene glycol)–poly(sebacic acid-D,L-lactic acid)–methoxy poly(ethylene glycol) triblock co-polymer. J Biomater Sci Polym Ed 20(7–8):923–934. https://doi.org/10.1163/156856209X444349

    Article  CAS  PubMed  Google Scholar 

  82. Petit A, Redout EM, van de Lest CH, de Grauw JC, Müller B, Meyboom R et al (2015) Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials 53:426–436. https://doi.org/10.1016/j.biomaterials.2015.02.109

    Article  CAS  PubMed  Google Scholar 

  83. Zentner GM, Rathi R, Shih C, McRea JC, Seo M-H, Oh H et al (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72(1):203–215. https://doi.org/10.1016/S0168-3659(01)00276-0

    Article  CAS  PubMed  Google Scholar 

  84. Elstad NL, Fowers KD (2009) OncoGel (ReGel/paclitaxel) – clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61(10):785–794. https://doi.org/10.1016/j.addr.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  85. DeWitt JM, Murthy SK, Ardhanari R, DuVall GA, Wallner G, Litka P et al (2017) EUS-guided paclitaxel injection as an adjunctive therapy to systemic chemotherapy and concurrent external beam radiation before surgery for localized or locoregional esophageal cancer: a multicenter prospective randomized trial. Gastrointest Endosc 86(1):140–149. https://doi.org/10.1016/j.gie.2016.11.017

    Article  PubMed  Google Scholar 

  86. DuVall GA, Tarabar D, Seidel RH, Elstad NL, Fowers KD (2009) Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anti-Cancer Drugs 20(2):89–95. https://doi.org/10.1097/CAD.0b013e3283222c12

    Article  CAS  PubMed  Google Scholar 

  87. Vukelja SJ, Anthony SP, Arseneau JC, Berman BS, Cunningham CC, Nemunaitis JJ et al (2007) Phase 1 study of escalating-dose OncoGel (ReGel/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anti-Cancer Drugs 18(3):283–289. https://doi.org/10.1097/CAD.0b013e328011a51d

    Article  CAS  PubMed  Google Scholar 

  88. Tellegen AR, Willems N, Beukers M, Grinwis GCM, Plomp SGM, Bos C et al (2018) Intradiscal application of a PCLA–PEG–PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: what’s in it for humans? J Tissue Eng Regen Med 12(3):642–652. https://doi.org/10.1002/term.2483

    Article  CAS  PubMed  Google Scholar 

  89. Durect Corporation (2017) DURECT announces top-line results from the PERSIST phase 3 trial of POSIMIR® (SABER®-Bupivacaine) did not meet primary efficacy endpoint. PR Newswire

    Google Scholar 

  90. Pavel M, Borson-Chazot F, Cailleux A, Horsch D, Lahner H, Pivonello R et al (2018) Octreotide SC depot in patients with acromegaly and functioning neuroendocrine tumors: a phase 2, multicenter study. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-018-3734-1

    Article  PubMed  CAS  Google Scholar 

  91. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  CAS  PubMed  Google Scholar 

  92. Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A et al (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57(1):53–63

    Article  PubMed  CAS  Google Scholar 

  93. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan–pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5(6):1956–1965

    Article  CAS  PubMed  Google Scholar 

  94. Kim K, Park S, Yang J-A, Jeon J-H, Bhang S, Kim B-S et al (2011) Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater 7(2):666–674

    Article  CAS  PubMed  Google Scholar 

  95. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G et al (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837

    Article  CAS  PubMed  Google Scholar 

  96. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14

    Article  CAS  PubMed  Google Scholar 

  97. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47(1):46–53

    Article  CAS  PubMed  Google Scholar 

  98. Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29(22):3260–3268

    Article  CAS  PubMed  Google Scholar 

  99. Lee K, Lee H, Bae KH, Park TG (2010) Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells. Biomaterials 31(25):6530–6536

    Article  CAS  PubMed  Google Scholar 

  100. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66

    Article  CAS  PubMed  Google Scholar 

  101. Ibusuki S, Fujii Y, Iwamoto Y, Matsuda T (2003) Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng 9(2):371–384

    Article  CAS  PubMed  Google Scholar 

  102. Davis H, Miller S, Case E, Leach J (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7(2):691–699

    Article  CAS  PubMed  Google Scholar 

  103. Jin R, Teixeira LM, Dijkstra PJ, Karperien M, Van Blitterswijk C, Zhong Z et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551

    Article  CAS  PubMed  Google Scholar 

  104. Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101(12):3793–3818

    Article  CAS  PubMed  Google Scholar 

  105. Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12(8):2872–2880

    Article  CAS  PubMed  Google Scholar 

  106. Tran NQ, Joung YK, Lih E, Park KM, Park KD (2010) Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. Biomacromolecules 11(3):617–625

    Article  CAS  PubMed  Google Scholar 

  107. Ding C, Zhao L, Liu F, Cheng J, Gu J, Dan S- et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules 2010;11(4):1043–1051.

    Article  CAS  PubMed  Google Scholar 

  108. Kim MS, Choi YJ, Noh I, Tae G (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A 83(3):674–682

    Article  PubMed  CAS  Google Scholar 

  109. Sakloetsakun D, Hombach JM, Bernkop-Schnürch A (2009) In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30(31):6151–6157

    Article  CAS  PubMed  Google Scholar 

  110. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. D-y T, Z-m W, X-g Z, Y-x W, Zheng C, Wang Z et al (2010) Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 51(3):639–646

    Article  CAS  Google Scholar 

  112. Zhang H, Qadeer A, Mynarcik D, Chen W (2011) Delivery of rosiglitazone from an injectable triple interpenetrating network hydrogel composed of naturally derived materials. Biomaterials 32(3):890–898

    Article  CAS  PubMed  Google Scholar 

  113. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  114. Wright SG, Christenson T, Yeah TY, Rickey ME, Hotz JM, Kumar R et al., inventors; Alkermes Inc., assignee (2004) Polymer-based sustained release device patent US Patent US7456254B2

    Google Scholar 

  115. Wright SG, Rickey ME, Ramstack JM, Lyons SL, Hotz JM, inventors; Alkermes Inc., assignee (2000) Method for preparing microparticles having a selected polymer molecular weight patent US Patent US6264987B1

    Google Scholar 

  116. Dormer N, Berkland C, inventors; Orbis Biosciences, Inc., assignee. Biodegradable polymer microsphere compositions for parenteral administration patent WO application WO2017189645A1. 2016.

    Google Scholar 

  117. Berkland C, Kim K, Pack DW (2001) Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release 73(1):59–74. https://doi.org/10.1016/S0168-3659(01)00289-9

    Article  CAS  PubMed  Google Scholar 

  118. Berkland C, King M, Cox A, Kim KK, Pack DW (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82(1):137–147

    Article  CAS  PubMed  Google Scholar 

  119. Berkland C, Pollauf E, Varde N, Pack DW, Kim K (2007) Monodisperse liquid-filled biodegradable microcapsules. Pharm Res 24(5):1007–1013. https://doi.org/10.1007/s11095-006-9197-9

    Article  CAS  PubMed  Google Scholar 

  120. Lew B, Kim IY, Choi H, Kim KK (2018) Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res 8(3):857–862. https://doi.org/10.1007/s13346-018-0484-x

    Article  CAS  PubMed  Google Scholar 

  121. https://carlinatech.com/peptidots-technology/

  122. Plexis TM (2016) http://www.auritecpharma.com/plexis/

  123. Smith T, inventor Auritec Pharmaceuticals, assignee. Coated particles for sustained-release pharmaceutical administration patent US Patent US9492388B2. 2002.

    Google Scholar 

  124. Schneider EL, Henise J, Reid R, Ashley GW, Santi DV (2016) Subcutaneously administered self-cleaving hydrogel–octreotide conjugates provide very long-acting octreotide. Bioconjug Chem 27(7):1638–1644. https://doi.org/10.1021/acs.bioconjchem.6b00188

    Article  CAS  PubMed  Google Scholar 

  125. Schneider EL, Hearn BR, Pfaff SJ, Reid R, Parkes DG, Vrang N et al (2017) A hydrogel-microsphere drug delivery system that supports once-monthly administration of a GLP-1 receptor agonist. ACS Chem Biol 12(8):2107–2116

    Article  CAS  PubMed  Google Scholar 

  126. Vhora I, Patil S, Bhatt P, Gandhi R, Baradia D, Misra A (2014) Receptor-targeted drug delivery: current perspective and challenges. Ther Deliv 5(9):1007–1024. https://doi.org/10.4155/tde.14.63

    Article  CAS  PubMed  Google Scholar 

  127. Bhatt P, Vhora I, Patil S, Amrutiya J, Bhattacharya C, Misra A et al (2016) Role of antibodies in diagnosis and treatment of ovarian cancer: basic approach and clinical status. J Control Release 226:148–167. https://doi.org/10.1016/j.jconrel.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  128. Vhora I, Patil S, Bhatt P, Misra A (2015) Chapter one – protein– and peptide–drug conjugates: an emerging drug delivery technology. In: Donev R (ed) Advances in protein chemistry and structural biology. Academic, Waltham, pp 1–55

    Google Scholar 

  129. Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001

    Article  PubMed  CAS  Google Scholar 

  130. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hosseini M, Farjadian F, Makhlouf ASH (2016) Smart stimuli-responsive nano-sized hosts for drug delivery. In: Industrial applications for intelligent polymers and coatings. Springer, Cham, pp 1–26

    Chapter  Google Scholar 

  132. Rhee Y-S, Park C-W, DeLuca PP, Mansour HM. Sustained-release injectable drug delivery. 2010.

    Google Scholar 

  133. Gulati N, Gupta H (2011) Parenteral drug delivery: a review. Recent Pat Drug Deliv Formulation 5(2):133–145

    Article  CAS  Google Scholar 

  134. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    Article  CAS  PubMed  Google Scholar 

  135. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  136. Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341

    Article  Google Scholar 

  137. Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem 115(38):4788–4791

    Article  Google Scholar 

  138. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  139. Gisbert-Garzarán M, Manzano M, Vallet-Regí M (2017) pH-responsive mesoporous silica and carbon nanoparticles for drug delivery. Bioengineering 4(1):3

    Article  PubMed Central  CAS  Google Scholar 

  140. Sawant RM, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko T et al (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang W-W, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58

    Article  PubMed  CAS  Google Scholar 

  142. Yoshida T, Lai TC, Kwon GS, Sako K (2013) pH-and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 10(11):1497–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhou L, Liang D, He X, Li J, Tan H, Li J et al (2012) The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials 33(9):2734–2745

    Article  CAS  PubMed  Google Scholar 

  144. Kratz F (2007) DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs 16(6):855–866

    Article  CAS  PubMed  Google Scholar 

  145. Zhao L, Zhu L, Liu F, Liu C, Wang Q, Zhang C et al (2011) pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 410(1–2):83–91

    Article  CAS  PubMed  Google Scholar 

  146. Knorr V, Russ V, Allmendinger L, Ogris M, Wagner E (2008) Acetal linked oligoethylenimines for use as pH-sensitive gene carriers. Bioconjug Chem 19(8):1625–1634

    Article  CAS  PubMed  Google Scholar 

  147. Tu C, Zhu L, Qiu F, Wang D, Su Y, Zhu X et al (2013) Facile PEGylation of Boltorn® H40 for pH-responsive drug carriers. Polymer 54(8):2020–2027

    Article  CAS  Google Scholar 

  148. Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416

    Article  CAS  PubMed  Google Scholar 

  149. Thambi T, Deepagan V, Yoo CK, Park JH (2011) Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer 52(21):4753–4759

    Article  CAS  Google Scholar 

  150. Sánchez M, Aranda FJ, Teruel JA, Ortiz A (2011) New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem Phys Lipids 164(1):16–23

    Article  PubMed  CAS  Google Scholar 

  151. Vhora I, Lalani R, Bhatt P, Patil S, Misra A (2019) Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. Int J Pharm 563:324–336

    Article  CAS  PubMed  Google Scholar 

  152. Midoux P, Pichon C, Yaouanc J-J, Jaffrès P-A (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157(2):166–178. https://doi.org/10.1111/j.1476-5381.2009.00288.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yuba E, Kojima C, Harada A, Watarai S, Kono K (2010) pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials 31(5):943–951

    Article  CAS  PubMed  Google Scholar 

  154. Yatvin M, Kreutz W, Horwitz B, Shinitzky M (1980) pH-sensitive liposomes: possible clinical implications. Science 210(4475):1253–1255

    Article  CAS  PubMed  Google Scholar 

  155. Cazzola R, Viani P, Allevi P, Cighetti G, Cestaro B (1997) pH sensitivity and plasma stability of liposomes containing N-stearoylcysteamine. Biochimica et Biophysica Acta (BBA)-Biomembranes 1329(2):291–301

    Article  CAS  Google Scholar 

  156. Parente R, Nir S, Szoka F (1988) pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. J Biol Chem 263(10):4724–4730

    CAS  PubMed  Google Scholar 

  157. Tycko B, Maxfield FR (1982) Rapid acidification of endocytic vesicles containing α2-macroglobulin. Cell 28(3):643–651

    Article  CAS  PubMed  Google Scholar 

  158. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4(11):2043–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1994) Molecular biology of the cell. Garland, New York. Google Scholar. 907–82

    Google Scholar 

  160. Renoux B, Raes F, Legigan T, Péraudeau E, Eddhif B, Poinot P et al (2017) Targeting the tumour microenvironment with an enzyme-responsive drug delivery system for the efficient therapy of breast and pancreatic cancers. Chem Sci 8(5):3427–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tukappa A, Ultimo A, de la Torre C, Pardo T, Sancenón F, Martínez-Máñez R (2016) Polyglutamic acid-gated mesoporous silica nanoparticles for enzyme-controlled drug delivery. Langmuir 32(33):8507–8515

    Article  CAS  PubMed  Google Scholar 

  162. Itoh Y, Matsusaki M, Kida T, Akashi M (2006) Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules. Biomacromolecules 7(10):2715–2718

    Article  CAS  PubMed  Google Scholar 

  163. Yao Q, Kou L, Tu Y, Zhu L (2018) Mmp-responsive ‘smart’drug delivery and tumor targeting. Trends Pharmacol Sci 39(8):766–781

    Article  CAS  PubMed  Google Scholar 

  164. Böttger R, Knappe D, Hoffmann R (2016) Readily adaptable release kinetics of prodrugs using protease-dependent reversible PEGylation. J Control Release 230:88–94

    Article  PubMed  CAS  Google Scholar 

  165. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(4):3491–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang C, Pan D, Luo K, She W, Guo C, Yang Y et al (2014) Peptide dendrimer–doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthcare Mater 3(8):1299–1308

    Article  CAS  Google Scholar 

  167. Singer JW, Shaffer S, Baker B, Bernareggi A, Stromatt S, Nienstedt D et al (2005) Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anti-Cancer Drugs 16(3):243–254

    Article  CAS  PubMed  Google Scholar 

  168. Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K et al (2007) In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother Pharmacol 59(4):537–548

    Article  CAS  PubMed  Google Scholar 

  169. Melancon MP, Li C (2011) Multifunctional synthetic poly (L-glutamic Acid)–based cancer therapeutic and imaging agents. Mol Imaging 10(1):7290.2011. 00007

    Article  CAS  Google Scholar 

  170. Scott KF, Sajinovic M, Hein J, Nixdorf S, Galettis P, Liauw W et al (2010) Emerging roles for phospholipase A2 enzymes in cancer. Biochimie 92(6):601–610

    Article  CAS  PubMed  Google Scholar 

  171. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  172. Meng F, Cheng R, Deng C, Zhong Z (2012) Intracellular drug release nanosystems. Mater Today 15(10):436–442

    Article  CAS  Google Scholar 

  173. Li Y, Lokitz BS, Armes SP, McCormick CL (2006) Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules 39(8):2726–2728

    Article  CAS  Google Scholar 

  174. Vachutinsky Y, Oba M, Miyata K, Hiki S, Kano MR, Nishiyama N et al (2011) Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 149(1):51–57

    Article  CAS  PubMed  Google Scholar 

  175. Zhang L, Liu W, Lin L, Chen D, Stenzel MH (2008) Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 9(11):3321–3331

    Article  CAS  PubMed  Google Scholar 

  176. Wu J, Zhao L, Xu X, Bertrand N, Choi WI, Yameen B et al (2015) Hydrophobic Cysteine Poly (disulfide)-based Redox-hypersensitive nanoparticle platform for cancer theranostics. Angew Chem Int Ed 54(32):9218–9223

    Article  CAS  Google Scholar 

  177. Manickam DS, Li J, Putt DA, Zhou Q-H, Wu C, Lash LH et al (2010) Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors. J Control Release 141(1):77–84

    Article  CAS  PubMed  Google Scholar 

  178. Zhong P, Zhang J, Deng C, Cheng R, Meng F, Zhong Z (2016) Glutathione-sensitive hyaluronic acid-SS-mertansine prodrug with a high drug content: facile synthesis and targeted breast tumor therapy. Biomacromolecules 17(11):3602–3608

    Article  CAS  PubMed  Google Scholar 

  179. Wen H, Li Y (2014) Redox sensitive nanoparticles with disulfide bond linked sheddable shell for intracellular drug delivery. Med Chem 4(11):748–755

    Article  CAS  Google Scholar 

  180. Zhai S, Hu X, Hu Y, Wu B, Xing D (2017) Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 121:41–54

    Article  CAS  PubMed  Google Scholar 

  181. Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528

    Article  CAS  Google Scholar 

  182. Baldwin AD, Kiick KL (2013) Reversible maleimide–thiol adducts yield glutathione-sensitive poly (ethylene glycol)–heparin hydrogels. Polym Chem 4(1):133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875

    Article  CAS  PubMed  Google Scholar 

  184. Webber MJ, Anderson DG (2015) Smart approaches to glucose-responsive drug delivery. J Drug Target 23(7–8):651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132(1):2–11

    Article  CAS  PubMed  Google Scholar 

  186. Takemoto Y, Ajiro H, T-a A, Akashi M (2010) Fabrication of surface-modified hydrogels with polyion complex for controlled release. Chem Mater 22(9):2923–2929

    Article  CAS  Google Scholar 

  187. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W et al (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2(7):1903–1911

    Article  CAS  PubMed  Google Scholar 

  190. Jeon H, Kim J, Lee YM, Kim J, Choi HW, Lee J et al (2016) Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J Control Release 231:68–76

    Article  CAS  PubMed  Google Scholar 

  191. Wahajuddin SA (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jenkins SI, Weinberg D, Al-Shakli AF, Fernandes AR, Yiu HH, Telling ND et al (2016) ‘Stealth’nanoparticles evade neural immune cells but also evade major brain cell populations: implications for PEG-based neurotherapeutics. J Control Release 224:136–145

    Article  CAS  PubMed  Google Scholar 

  193. Xiong F, Chen Y, Chen J, Yang B, Zhang Y, Gao H et al (2013) Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. J Control Release 172(3):993–1001

    Article  CAS  PubMed  Google Scholar 

  194. Liu D, Wu W, Chen X, Wen S, Zhang X, Ding Q et al (2012) Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale 4(7):2306–2310

    Article  CAS  PubMed  Google Scholar 

  195. Johnson J (2002) Magnetics business & technology magazine – premier issue. http://www.magneticsmagazine.com/eprints/FeRx.htm

  196. Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5(9):7124–7129

    Article  CAS  PubMed  Google Scholar 

  197. Gordon R, Hines J, Gordon D (1979) Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5(1):83–102

    Article  CAS  PubMed  Google Scholar 

  198. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth 29(8):790–800

    Article  Google Scholar 

  199. Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscience 1(60):e88

    Google Scholar 

  200. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13(11):813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54(5):613–630

    Article  CAS  PubMed  Google Scholar 

  202. Arouri A, Mouritsen OG (2013) Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 52(1):130–140

    Article  CAS  PubMed  Google Scholar 

  203. Mills JK, Needham D (2005) Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochimica et Biophysica Acta (BBA)-Biomembranes 1716(2):77–96

    Article  CAS  Google Scholar 

  204. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D et al (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60(24):6950–6957

    CAS  PubMed  Google Scholar 

  205. De Smet M, Langereis S, van den Bosch S, Grüll H (2010) Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release 143(1):120–127

    Article  PubMed  CAS  Google Scholar 

  206. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    Article  CAS  PubMed  Google Scholar 

  207. Oldenburg S, Averitt R, Westcott S, Halas N (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    Article  CAS  Google Scholar 

  208. Hirsch LR, Stafford RJ, Bankson J, Sershen SR, Rivera B, Price R et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tagami T, Ernsting MJ, Li S-D (2011) Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 152(2):303–309

    Article  CAS  PubMed  Google Scholar 

  210. Korenaga K, Korenaga M, Hino K, Sakaida I (2009) Usefulness of sonazoid-contrast enhanced ultrasonography for hepatocellular carcinoma: comparison with pathological diagnosis and superparamagnetic iron oxide magnetic resonance images: 931. Hepatology 50:743A

    Article  CAS  Google Scholar 

  211. Cheng Y, Hao J, Lee LA, Biewer MC, Wang Q, Stefan MC (2012) Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly (ε-caprolactone) micellar nanoparticles. Biomacromolecules 13(7):2163–2173

    Article  CAS  PubMed  Google Scholar 

  212. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9(11):11023–11033

    Article  CAS  PubMed  Google Scholar 

  213. Marin A, Muniruzzaman M, Rapoport N (2001) Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 71(3):239–249

    Article  CAS  PubMed  Google Scholar 

  214. Rapoport N (2012) Ultrasound-mediated micellar drug delivery. Int J Hyperth 28(4):374–385

    Article  CAS  Google Scholar 

  215. Watanabe R, Matsumura M, Munemasa T, Fujimaki M, Suematsu M (2007) Mechanism of hepatic parenchyma-specific contrast of microbubble-based contrast agent for ultrasonography: microscopic studies in rat liver. Investig Radiol 42(9):643–651

    Article  CAS  Google Scholar 

  216. Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, Shiono Y et al (2016) Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci 107(3):217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN (2010) Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 18(1):101–108

    Article  CAS  PubMed  Google Scholar 

  218. Deng Z, Yan F, Jin Q, Li F, Wu J, Liu X et al (2014) Reversal of multidrug resistance phenotype in human breast cancer cells using doxorubicin-liposome–microbubble complexes assisted by ultrasound. J Control Release 174:109–116

    Article  CAS  PubMed  Google Scholar 

  219. Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232(2):206–213

    Article  CAS  PubMed  Google Scholar 

  220. Shum P, Kim J-M, Thompson DH (2001) Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 53(3):273–284

    Article  CAS  PubMed  Google Scholar 

  221. Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64(11):1005–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85(4):848–860

    Article  CAS  PubMed  Google Scholar 

  223. Linsley CS, Wu BM (2017) Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv 8(2):89–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Normand N, Valamanesh F, Savoldelli M, Mascarelli F, BenEzra D, Courtois Y et al (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11(21):184–191

    CAS  PubMed  Google Scholar 

  225. Schmidt-Erfurth U, Hasan T (2000) Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol 45(3):195–214

    Article  CAS  PubMed  Google Scholar 

  226. Vhora I, Patil S, Amrutiya J, Misra A (2015) Liposomes and lipid envelope-type systems for systemic siRNA delivery. Curr Pharm Des 21(31):4541–4555

    Article  CAS  PubMed  Google Scholar 

  227. Khatri N, Baradia D, Vhora I, Rathi M, Misra A (2014) cRGD grafted liposomes containing inorganic nano-precipitate complexed siRNA for intracellular delivery in cancer cells. J Control Release 182:45–57. https://doi.org/10.1016/j.jconrel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  228. Vhora I, Lalani R, Bhatt P, Patil S, Patel H, Patel V et al (2018) Colloidally stable small unilamellar stearyl amine lipoplexes for effective BMP-9 gene delivery to stem cells for osteogenic differentiation. AAPS PharmSciTech. https://doi.org/10.1208/s12249-018-1161-6

    Article  CAS  PubMed  Google Scholar 

  229. Khatri N, Baradia D, Vhora I, Rathi M, Misra A (2014) Development and characterization of siRNA lipoplexes: effect of different lipids, in vitro evaluation in cancerous cell lines and in vivo toxicity study. AAPS PharmSciTech 15(6):1630–1643. https://doi.org/10.1208/s12249-014-0193-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Patil S, Lalani R, Bhatt P, Vhora I, Patel V, Patel H et al (2018) Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics. RSC Adv 8(62):35461–35473. https://doi.org/10.1039/C8RA06298F

    Article  CAS  Google Scholar 

  231. Bhatt P, Khatri N, Kumar M, Baradia D, Misra A (2015) Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Delivery 22(6):849–861. https://doi.org/10.3109/10717544.2014.898348

    Article  CAS  PubMed  Google Scholar 

  232. Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A et al (2016) Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Adv 6(112):110951–110963

    Article  CAS  Google Scholar 

  233. Vhora I, Khatri N, Desai J, Thakkar HP (2014) Caprylate-conjugated cisplatin for the development of novel liposomal formulation. AAPS PharmSciTech 15(4):845–857. https://doi.org/10.1208/s12249-014-0106-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A et al (2018) Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm 536(1):95–107. https://doi.org/10.1016/j.ijpharm.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  235. Allmendinger A, Fischer S, Huwyler J, Mahler H-C, Schwarb E, Zarraga IE et al (2014) Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions. Eur J Pharm Biopharm 87(2):318–328. https://doi.org/10.1016/j.ejpb.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  236. Liu J, Nguyen MDH, Andya JD, Shire SJ (2005) Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci 94(9):1928–1940. https://doi.org/10.1002/jps.20347

    Article  CAS  PubMed  Google Scholar 

  237. Boyd BM, Mudumba S, Farr SJ, inventors; Zogenix Inc., assignee (2005) Viscous formulations and their use in needle-free injection patent United States patent US8066661B2

    Google Scholar 

  238. Hooven MD (2018) Advanced delivery devices – sophisticated connected wearables: boosting biologics’ compliance, value & patient satisfaction. Drug Dev Deliv 16:24–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vhora, I., Bardoliwala, D., Ranamalla, S.R., Javia, A. (2019). Parenteral Controlled and Prolonged Drug Delivery Systems: Therapeutic Needs and Formulation Strategies. In: Misra, A., Shahiwala, A. (eds) Novel Drug Delivery Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-3642-3_7

Download citation

Publish with us

Policies and ethics