Skip to main content

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Thermodynamic analyses are performed on diesel engine with different types of nanofluid blend operations. Three best blends, i.e., D + 50ZN, D + 50AN, D + 50CN are chosen for exergy analysis. The effects of nanofluid on diesel are examined from the second law perspective. Availability equations are applied to both diesel and nanofluid blend modes at varying engine loads, and exergy terms such as brake work availability, exhaust gas availability, cooling water availability, and irreversibility are calculated and compared. There is an increase in exergy efficiency with an increase in load for all fuel blends tested. The nanofluid blend operations are favored thermodynamically at all loads. For diesel at full load, 26.88% of the fuel exergy is converted to brake power. At same load, nanofluid blend modes have resulted higher exergy efficiency of 28.22, 28.78, 29.16% for D + 50ZN, D + 50AN, D + 50CN, respectively, due to the higher brake work availability and decreased destruction availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy, A.V., Kumar, T.S., Kumar, D.K.T., Dinesh, B., Santosh, Y.V.S.S.: Energy and exergy analysis of I.C. engines. Int. J. Eng. Sci. 3(5), 07–26 (2014)

    Google Scholar 

  2. Tosun, E.: Energy and exergy analysis of a diesel engine. MSc Thesis, Cukurova University, Institute of Natural and Applied Sciences, Adana (2013)

    Google Scholar 

  3. Islam, M.M., Rahman, M.A., Abedin, M.Z.: First law analysis of a DI diesel engine running on straight vegetable oil. Int. J. Mech. Mech. Eng. 11(3), 1–5 (2011)

    Google Scholar 

  4. Zheng, J., Caton, J.A.: Second law analysis of a low temperature combustion diesel engine: effect of injection timing and exhaust gas recirculation. Energy 38(1), 78–84 (2012)

    Article  Google Scholar 

  5. Wong, K.V., Leon, O.D.: Applications of nanofluids: current and future. Adv. Mech. Eng. 1–11 (2010). https://doi.org/10.1155/2010/519659

    Article  Google Scholar 

  6. Mehta, R.N., Chakraborty, M., Parikh, P.A.: Nanofuels: combustion, engine performance and emissions. Fuel 120, 91–97 (2014)

    Article  Google Scholar 

  7. Kao, M.-J., Ting, C.-C., Lin, B.-F., Tsung, T.-T.: Aqueous aluminum nanofluid combustion in diesel fuel. J. Test. Eval. 36(2), 1–5 (2007)

    Google Scholar 

  8. Yetter, R.A., Risha, G.A., Son, S.F.: Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32(2), 1819–1838 (2009)

    Article  Google Scholar 

  9. Selvaganapthy, A., Sundar, A., Kumaragurubaran, B., Gopal, P.: An experimental investigation to study the effects of various nanoparticles with diesel on DI diesel engine. ARPN J. Sci. Technol. 3(1), 112–115 (2013)

    Google Scholar 

  10. Sadhik Basha, J., Anand, R.B.: Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. J. Renew. Sustain. Energy 3(2), 1–17 (2011)

    Google Scholar 

  11. Mirzajanzadeh, M., Tabatabaei, M., Ardjmand, M., Rashidi, A., Ghobadian, B., Barkhi, M., Pazouki, M.: A novel soluble nano-catalysts in diesel-biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 139, 374–382 (2015)

    Article  Google Scholar 

  12. Harilal, S.S., Hitesh, J.Y.: Energy analyses to a CI-engine using diesel and bio gas dual fuel: a review study. Int. J. Adv. Eng. Res. Stud. 1(2), 212–217 (2012)

    Google Scholar 

  13. Thibordin, S., Kasama, S., Supachai, W.: The analysis of exergy in a single cylinder diesel engine fuelled by diesel and biodiesel. J. Sci. Technol. MSU 3, 556–562 (2012)

    Google Scholar 

  14. Ozkan, M., Ozkan, D.B., Ozener, O., Yilmaz, H.: Experimental study on energy and exergy analyses of a diesel engine performed with multiple injection strategies: effect of pre-injection timing. Appl. Therm. Eng. 53, 21–30 (2013)

    Article  Google Scholar 

  15. Kopac, M., Kokturk, L.: Determination of optimum speed of an internal combustion engine by exergy analysis. Int. J. Exergy 2(1), 40–54 (2005)

    Article  Google Scholar 

  16. Rosen, M.A.: Using exergy to correlate energy research investments and efficiencies: concept and case studies. Entropy 15, 262–286 (2013)

    Article  Google Scholar 

  17. Debnath, B.K., Sahoo, N., Saha, U.K.: Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester. Energy Convers. Manag. 65, 147–154 (2013)

    Article  Google Scholar 

  18. Ghazikhani, M., Hatami, M., Ganji, D.D., Gorji-Bandpy, M., Behravan, A., Shahi, G.: Exergy recovery from the exhaust cooling in a DI diesel engine for BSFC reduction purposes. Energy 65, 44–51 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkatesan, S.P., Kadiresh, P.N. (2019). Thermodynamic Analysis of Diesel Engine Fuelled with Aqueous Nanofluid Blends. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2718-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2718-6_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2717-9

  • Online ISBN: 978-981-13-2718-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics