Skip to main content

Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell

  • Conference paper
  • First Online:

Abstract

The effluent discharged from domestic and industrial activities contains both organic and inorganic matter, which requires effective treatment before discharging into the water body. Recently, a new bioelectrochemical system called microbial desalination cell (MDC) is developed for simultaneous removal of organic matter and dissolved solids along with energy recovery. Four MDCs, each consisting of five chambers, viz. anodic, cathodic, desalination, and two concentrate chambers, were operated in batch mode. The performance of MDCs for total dissolved solids (TDS) removal and power generation was observed using different cathodic electron acceptors, viz. oxygen, dichromate, permanganate, and hypochlorite. At 5 g/L of initial TDS concentration in desalination chamber, the TDS removal efficiencies of 52 ± 3, 55 ± 3, 58 ± 2 and 64 ± 2% were observed with oxygen, dichromate, permanganate and hypochlorite as catholyte, respectively. The TDS removal was further enhanced to 72 ± 2, 78 ± 4, 82 ± 3 and 89 ± 2% with oxygen, dichromate, permanganate and hypochlorite as catholyte, respectively, under 30 g/L of TDS concentration of saline water. Maximum sustainable power densities of 18, 26, 60 and 207 mW/m2 were generated with oxygen, dichromate, permanganate and hypochlorite as catholyte, respectively, at 100 Ω external resistance when 5 g/L TDS concentration was used for desalination. At 30 g/L of TDS concentration, the sustainable power densities increased to 25, 35, 84 and 347 mW/m2 with oxygen, dichromate, permanganate and hypochlorite as catholyte, respectively, due to reduced internal resistance of the cell. Hence, there is a scope to improve the electricity recovery in MDC using chemical catholytes. Higher TDS concentration in desalination chamber leads to higher desalination performance as compared to lower TDS concentration. High redox potential of hypochlorite favoured higher desalination performance as compared to other electron acceptors. Hence, cathodic electron acceptors have a significant effect on TDS removal and electricity recovery in the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  CAS  Google Scholar 

  2. Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Biores Technol 105:60–66

    Article  CAS  Google Scholar 

  3. Forrestal C, Xu P, Ren Z (2012) Sustainable desalination using a microbial capacitive desalination cell. Energy Environ Sci 5(5):7161–7167

    Article  CAS  Google Scholar 

  4. Zhang B, He Z (2012) Integrated salinity reduction and water recovery in an osmotic microbial desalination cell. Rsc Adv 2(8):3265–3269

    Article  CAS  Google Scholar 

  5. Jacobson KS, Drew DM, He Z (2011) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Biores Technol 102(1):376–380

    Article  CAS  Google Scholar 

  6. Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45(10):4652–4657

    Article  CAS  Google Scholar 

  7. Chen X, Xia X, Liang P, Cao X, Sun H, Huang X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45(6):2465–2470

    Article  CAS  Google Scholar 

  8. Qu Y, Feng Y, Liu J, He W, Shi X, Yang Q, Lv J, Logan BE (2013) Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination 317:17–22

    Article  CAS  Google Scholar 

  9. Pradhan H, Ghangrekar MM (2015) Organic matter and dissolved salts removal in a microbial desalination cell with different orientation of ion exchange membranes. Desalin Water Treat 54(6):1568–1576

    CAS  Google Scholar 

  10. Mehanna M, Kiely PD, Call DF, Logan BE (2010) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 44(24):9578–9583

    Article  CAS  Google Scholar 

  11. Ghadge AN, Jadhav DA, Pradhan H, Ghangrekar MM (2015) Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Biores Technol 82:225–231

    Article  Google Scholar 

  12. Jadhav DA, Ghadge AN, Mondal D, Ghangrekar MM (2014) Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Biores Technol 154:330–335

    Article  CAS  Google Scholar 

  13. Ghangrekar MM, Shinde VB (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Biores Technol 98(15):2879–2885

    Article  CAS  Google Scholar 

  14. Ghangrekar MM, Asolekar SR, Joshi SG (2005) Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res 39(6):1123–1133

    Article  CAS  Google Scholar 

  15. APHA, AWWA, WPCF (1998) Standard Methods for Examination of Water and Wastewater, 20th edn., American Public Health Association, Washington, DC

    Google Scholar 

  16. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MC, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940

    Article  CAS  Google Scholar 

  17. Fricke K, Harnisch F, Schröder U (2008) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci 1(1):144–147

    Article  CAS  Google Scholar 

  18. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74(1):78–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand M. Ghangrekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pradhan, H., Ghangrekar, M.M. (2019). Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell. In: Ghosh, S. (eds) Waste Water Recycling and Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2619-6_23

Download citation

Publish with us

Policies and ethics