Skip to main content

Algal Biofuel: Still Not a Common Man’s Fuel?

  • Chapter
  • First Online:
The Role of Microalgae in Wastewater Treatment

Abstract

The rapid lifestyle of industrialization and increasing demand of fossil oil that are going to be scarce in future date have led to think the alternative source of renewable energy as fuels to meet our energy demands. Fossil fuel is challenged with increasing price and a decreasing quantity, and burning of the fuels is putting the environment into threat toward pollution and global warming. Various steps toward cultivating oil crops such as Jatropha, corn, coconut, soybean, and oil palm have been encouraged, but productivity of oil has been very less, i.e., 5% of total biomass, and it needs vast acres of cultivated land. Therefore, to overcome the problem, today’s world is moving toward microalgae cultivation, which in comparison can grow faster in wastelands/uncultivated lands and can produce up to 80% of the dry weight of algae biomass. Microalgae are phototrophic and are able to transform carbon dioxide into biofuels, valuable bioactive compounds, foods, and feeds. In spite of all positivity, microalgae biofuel is still not common man’s fuel due to various hurdles. Overhead harvesting cost is 20–30% higher to the cultivation cost of algae; it can reduce the nonrenewable resources (nitrogen, phosphorus) for which still date it cannot reach to common man. However, limited supply of these renewable oils and high cost stop it to be a potential challenger in the face of other petroleum-based fuels. Overall, economic feasibility and environmental suitability cannot be forgotten when venturing into scaling up for future commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal AK (2007) Biofuels (alcohol and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  CAS  Google Scholar 

  2. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. https://doi.org/10.1016/j.pecs.2010.01.003

    Article  CAS  Google Scholar 

  3. International Energy Outlook 2013 (2013) International Energy Outlook 2013 (IEO2013), released by the U.S. Energy Information Administration (EIA). Published: July 25, 2013. [Internet] http://susris.com/2013/07/25/international-energy-outlook-2013/

  4. Parry ML (2007) Intergovernmental Panel on Climate Change, Working Group II, World Meteorological Organization, United Nations Environment Programme. Summary for Policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  5. Alemán-Nava GS, Casiano-Flores VH, Cárdenas-Chávez DL, Díaz-Chavez R, Scarlat N, Mahlknecht J, Dallemand JF, Parra R (2014) Renewable energy research progress in Mexico: a review. Renew Sust Energ Rev 32:140–153. https://doi.org/10.1016/j.rser.2014.01.004

    Article  Google Scholar 

  6. Mata TM, Martins AAA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  7. Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Biorefin 4:310–325. https://doi.org/10.1002/bbb.228

    Article  CAS  Google Scholar 

  8. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  9. Prasad S, Singh A, Joshi HC (2007a) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39. https://doi.org/10.1016/j.resconrec.2006.05.007

    Article  Google Scholar 

  10. Prasad S, Singh A, Joshi HC (2007b) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420. https://doi.org/10.1021/ef060328z

    Article  CAS  Google Scholar 

  11. Singh A, Nigam PS, Murphy JD (2010a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.06.032

  12. Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010b) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  Google Scholar 

  13. Singh A, Smyth BM, Murphy JD (2010c) A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sust Energ Rev 14:277–288

    Article  CAS  Google Scholar 

  14. Carlsson A, Beilen van J, Möller R, Clayton D, Bowles DE (2007) Micro-and macroalgae – utility for industrial applications Bioproducts, E. R. t. E. P. o. S. R.-. and Crops, f. N.-f., CNAP, University of York: 86

    Google Scholar 

  15. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  16. Minowa T, Yokoyama SYA, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738. https://doi.org/10.1016/0016-2361(95)80001-X

    Article  CAS  Google Scholar 

  17. Haag AL (2007) Algae bloom again. Nature 447:520–521. https://doi.org/10.1038/447520a

    Article  CAS  Google Scholar 

  18. Shurin JB, Mandal S, Abbott RL (2014) Trait diversity enhances yield in algal biofuel assemblages. J Appl Ecol 51:603–611. https://doi.org/10.1111/1365-2664.12242

    Article  Google Scholar 

  19. Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34

    Article  CAS  Google Scholar 

  20. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47. https://doi.org/10.1029/2010WR009966

  21. Gerbens-Leenes PW, Xu L, De Vries GJ, Hoekstra AY (2014) The blue water footprint and land use of biofuels from algae. Water Resour Res 50:8549–8563. https://doi.org/10.1002/2014WR015710

    Article  CAS  Google Scholar 

  22. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. https://doi.org/10.1007/s002530100702

    Article  CAS  Google Scholar 

  23. Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173. https://doi.org/10.1071/PP01213

    Article  CAS  Google Scholar 

  24. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  25. Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J Exp Bot 64:769–786. https://doi.org/10.1093/jxb/ers390S

    Article  CAS  Google Scholar 

  26. Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541. https://doi.org/10.1016/j.tibtech.2011.06.006

    Article  CAS  Google Scholar 

  27. Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) Carbon capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  28. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214. https://doi.org/10.1016/j.jbiotec.2013.07.020

    Article  CAS  Google Scholar 

  29. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  30. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165. https://doi.org/10.1016/j.biortech.2010.07.017

    Article  CAS  Google Scholar 

  31. Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies and processes for biofuels/bioenergy production in British Columbia. BC Innovation Council, Vancouver

    Google Scholar 

  32. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240. https://doi.org/10.1016/j.copbio.2008.05.007

    Article  CAS  Google Scholar 

  33. U.S. Energy Information Administration, Department of Energy (DOE) crude oil estimates/statistics: http://www.eia.doe.gov/emeu/international/reserves.html; http://www.eia.doe.gov/energyexplained/index.cfm?page=oil_home#tab2; http://tonto.eia.doe.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_a.htm

  34. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalgae chlorella photothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  35. Yusuf C (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enketeswara Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A., Sahoo, R.K., Subudhi, E. (2019). Algal Biofuel: Still Not a Common Man’s Fuel?. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_4

Download citation

Publish with us

Policies and ethics