Skip to main content

Advancement of Genetic Engineering in Rhamnolipid(s) Production

  • Chapter
  • First Online:
Rhamnolipid Biosurfactant

Abstract

Genetic engineering is manipulation of selected organism’s genome by employing biotechnological tools. Pseudomonas aeruginosa are regarded as an efficient producer of rhamnolipid biosurfactant but due to their pathogenic nature much attention has been paid for rhamnolipid production from non-pathogenic strain. On this contrary, genentic engineering technology is widely explored for the large scale production of rhamnolipid biosurfactant. Hence, the present chapter ventures into molecular aspects of rhamnolipid production by microorganisms and possible role of genetic engineering in rhamnolipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Biosurfactants. Springer, Berlin, pp 13–55

    Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (eds) (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21(1):156–164

    Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, …, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    Article  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223

    Article  CAS  Google Scholar 

  • Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73(1):187–194

    Article  CAS  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199

    Article  CAS  Google Scholar 

  • Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11(3):125–130

    Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149(8):2005–2013

    Article  CAS  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33(1):123–135

    Article  CAS  Google Scholar 

  • Han L (2004). Genetically modified microorganisms. In: The GMO handbook. Humana Press, Totowa, pp 29–51

    Chapter  Google Scholar 

  • Hori K, Ichinohe R, Unno H, Marsudi S (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J 53(2):196–202

    Article  CAS  Google Scholar 

  • Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Videau P, Son M, Hoang TT (2010) Correction: multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS One 5(11):10–1371

    Article  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354

    Article  Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34(9):1597–1605

    Article  CAS  Google Scholar 

  • Melo A, Glaser L (1965) The nucleotide specificity and feedback control of thymidine diphosphate D-glucose pyrophosphorylase. J Biol Chem 240(1):398–405

    CAS  PubMed  Google Scholar 

  • Meyer P (1994) Bi-logistic growth. Technol Forecast Soc Chang 47(1):89–102

    Article  Google Scholar 

  • Miller DJ, Zhang YM, Rock CO, White SW (2006) Structure of RhlG, an essential β-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 281(26):18025–18032

    Article  CAS  Google Scholar 

  • Moghaddam MM, Khodi S, Mirhosseini A (2014) Quorum sensing in bacteria and a glance on Pseudomonas aeruginosa. Clin Microbiol: Open Access

    Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, …, Hausmann R (2012) Rhamnolipids – next generation surfactants? J Biotechnol 162(4):366–380

    Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21(6):1593–1600

    Article  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176(7):2044–2054

    Article  CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61(9):3503–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olvera C, Goldberg JB, Sánchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179(1):85–90

    Article  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150(10):3405–3413

    Article  CAS  Google Scholar 

  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146(11):2803–2814

    Article  CAS  Google Scholar 

  • Robertson BD, Frosch M, Van Putten JP (1994) The identification of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis. J Bacteriol 176(22):6915–6920

    Article  CAS  Google Scholar 

  • Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, …, Jaeger KE (2010) Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 309(1):25–34

    Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5(1):27–37

    Article  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185(7):2066–2079

    Article  CAS  Google Scholar 

  • Solaiman DK, Ashby RD, Crocker N, Lai BH, Zerkowski JA (2014) Rhamnolipid and poly (hydroxyalkanoate) biosynthesis in 3-hydroxyacyl-ACP: CoA transacylase (phaG)-knockouts of Pseudomonas chlororaphis. Biocatal Agric Biotechnol 3(2):159–166

    Google Scholar 

  • Stark BC, Pagilla KR, Dikshit KL (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99(4):1627–1636

    Article  CAS  Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    Article  CAS  Google Scholar 

  • Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE (2007) The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189(18):6695–6703

    Article  CAS  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, …, Hausmann R (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories 10(1):80

    Article  CAS  Google Scholar 

  • Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5(3):116–123

    Article  Google Scholar 

  • Zhao F, Mandlaa M, Hao J, Liang X, Shi R, Han S, Zhang Y (2014) Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery. Lett Appl Microbiol 59(2):231–237

    Article  CAS  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190(9):3147–3154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Das, A.J. (2018). Advancement of Genetic Engineering in Rhamnolipid(s) Production. In: Rhamnolipid Biosurfactant. Springer, Singapore. https://doi.org/10.1007/978-981-13-1289-2_4

Download citation

Publish with us

Policies and ethics