Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

By comparing with the phosphate slag-cement, MPC and KH PO cement, this chapter selects the best binder for S/S of Pb-contaminated soil in terms of S/S effect and economical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du YJ, Wei ML, Reddy KR, et al. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J Hazard Mater. 2014;271(30):131–40.

    Article  Google Scholar 

  2. Du YJ, Jiang NJ, Liu SY, et al. Engineering properties and microstructural characteristics of cement solidified zinc contaminated kaolin clay. Can Geotech J. 2014;51(3):289–302.

    Article  Google Scholar 

  3. Basta NT, McGowen SL. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollution. 2004;127(1):73–82.

    Article  Google Scholar 

  4. Park JH, Bolan N, Megharaj M, et al. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Sci Total Environ. 2011;409(4):853–60.

    Article  Google Scholar 

  5. Wang AJ, Zhang J, Li JM, et al. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics. Mater. Sci. Eng. 2013;33(5):2508–12.

    Article  Google Scholar 

  6. Cuisinier O, Borgne TL, Deneele D, et al. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement. Eng Geol. 2011;117(3–4):229–35.

    Article  Google Scholar 

  7. Pereria CF, Pinero MR, Vale J. Solidification/stabilization of electric arc furnace dust using coal fly ash analysis of the stabilization process. J Hazard Mater. 2001;82(2):183–95.

    Article  Google Scholar 

  8. Yin CY, Mahmud HB, Shaaban MG. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash. J Hazard Mater. 2006;137(3):1758–64.

    Article  Google Scholar 

  9. Lee D, Waite TD, Swarbrick G, et al. Comparison of solidification/stabilization effects of calcite between Australian and Korea (R. O.) cements. Cem Concr Res. 2005;35(11):2143–57.

    Article  Google Scholar 

  10. Gajo A, Maines M. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active clay. Geotechnique. 2007;57(8):687–99.

    Article  Google Scholar 

  11. Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binder. Cem Concr Res. 2002;32(12):1971–9.

    Article  Google Scholar 

  12. Li XD, Poon CS, Sun H, et al. Heavy metal speciation and leaching behaviour in cement based solidified/stabilized waste materials. J Hazard Mater. 2001;82(3):215–30.

    Article  Google Scholar 

  13. Asavapisit S, Nanthamontry W, Polprasert C. Influence of condensed silica fume on the properties of cement-based solidified wastes. Cem Concr Res. 2001;31(8):1147–52.

    Article  Google Scholar 

  14. Qin G, Sun DD, Tay JH. Characterization of mercury- and zinc-doped alkali-activated slag matrix: part II. zinc. Cem Concr Res. 2003;33(8):1251–6.

    Article  Google Scholar 

  15. Jing CY, Meng XG, Korfiatis GP. Lead Leachability in stabilized/solidified soil samples evaluated with different leaching tests. J Hazard Mater. 2004;114(1–3):101–10.

    Article  Google Scholar 

  16. Tang XY, Zhu YG, Chen SB, et al. Assessment of the effectiveness of different phosphorus fertilizers to remediate pb-contaminated soil using in vitro test. Environ Int. 2004;30(4):531–7.

    Article  Google Scholar 

  17. Cui YS, Du X, Weng LP, et al. Assessment of in situ Immobilization of lead (Pb) and arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility. Water Air Soil Pollut. 2010;213(1–4):95–104.

    Article  Google Scholar 

  18. Cheng KY, Bishop PL. Metals distribution in solidified/stabilized wasteforms after leaching. Hazard Waste Hazard Mater. 2009;9(2):163–71.

    Article  Google Scholar 

  19. Peralta GL, Ballesteros FC, Cepeda ML. Treatment and disposal of heavy metal waste using cementitious solidification. In: Proceedings of Pacific basin conference on hazardous waste. PBCHWR, 1992: 1.

    Google Scholar 

  20. Nederlands Norm (NEN 7345). Leaching characteristics of soil and stony building and waste material. 1994.

    Google Scholar 

  21. Cote PL, Isabel D. Application of a dynamic leaching test to solidified hazardous wastes. Hazard Ind Waste Manag Testing ASTM STP. 1984;851:48–60.

    Google Scholar 

  22. Van der sloot HA, Heasman L, Quevauiller P. Harmonization of leaching/extraction tests. Stud Environ Sci. 1997;70:292.

    Google Scholar 

  23. Mundell JA, Hill KR. In place precipitation immobilization: technical and economic assessment at the A.Y. Mcdonald Foundry Site, Dubuque, Iowa[A]. In: Proceedings of the hazardous wastes and environmental emergencies, Houston, TX; 1984, pp. 177–181.

    Google Scholar 

  24. Ma QY, Traina SJ, Logan TJ, et al. In situ lead immobilization by apatite. Environ Sci Technol. 1993;27(9):1803–10.

    Article  Google Scholar 

  25. Nriagu JO. Lead orthophosphates-IV formation and stability in the environment. Geochim Cosmochim Acta. 1974;38(6):887–98.

    Article  Google Scholar 

  26. Cao X, Ma LQ, Rhue DR, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut. 2004;131(3):435–44.

    Article  Google Scholar 

  27. Takeuchi Y, Arai H. Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. J Chem Eng Jpn. 1990;23(1):75–80.

    Article  Google Scholar 

  28. Janusa MA, Champagne CA, Fanguy JC, et al. Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement. Microchem J. 2000;65(3):255–9.

    Article  Google Scholar 

  29. ASTM C1308-08. Standard method for accelerated leach test for diffusive release from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms. ASTM International; 2009.

    Google Scholar 

  30. Stegemann JA, Cote PL. Summary of an investigation of test methods for solidified waste evaluation. Waste Manage. 1990;10(1):41–52.

    Article  Google Scholar 

  31. 9487.00-2A, EPA/530-SW-016. Prohibition on the disposal of bulk liquid hazardous waste in landfills (OSWER) policy directive. USEPA; 1986.

    Google Scholar 

  32. Buj I, Torras J, Casellas D, et al. Effect of heavy metals and water content on the strength of magnesium phosphate cements. J Hazard Mater. 2009;170(1):345–50.

    Article  Google Scholar 

  33. Chen L, Du YJ, Liu SY, et al. Evaluation of cement hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement. J Hazard Toxic Radioact Waste. 2010;15(4):312–20.

    Article  Google Scholar 

  34. Chen G, Tao D. Effect of solution chemistry on floatability of magnesite and dolomite. Int J Mineral Process. 2004;74(1):343–57.

    Article  Google Scholar 

  35. Torras J, Buj I, Rovira M, et al. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J Hazard Mater. 2011;186(2):1954–60.

    Article  Google Scholar 

  36. Qiao F, Chau CK, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr Build Mater. 2010;24(5):695–700.

    Article  Google Scholar 

  37. Ding Z, Li Z. Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement. Cem Concr Compos. 2005;27(1):11–8.

    Article  Google Scholar 

  38. Du YJ, Jiang NJ, Shen SL, et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. J Hazard Mater. 2012;225:195–201.

    Article  Google Scholar 

  39. Moon DH, Dermatas D. An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Eng Geol. 2006;85(1):67–74.

    Article  Google Scholar 

  40. Buj I, Torras J, Rovira M, et al. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals. J Hazard Mater. 2010;175(1):789–94.

    Article  Google Scholar 

  41. ANSI/ANS-16.1-2003. Measurements of the leachability of solidified low-level radioactive wastes by a short-term test procedure. ANS; 1986.

    Google Scholar 

  42. Environment Canada. Proposed evaluation protocol for cement based solidified wastes. Ottawa: Wastewater Technology Centre; 1991.

    Google Scholar 

  43. Moon DH, Dermatas D, Grubb DG. Release of arsenic (As) and lead (Pb) from quicklime-sulfate stabilized/solidified soils under diffusion-controlled conditions. Environ Monit Assess. 2010;169(1–4):259–65.

    Article  Google Scholar 

  44. Song F, Gu L, Zhu N, et al. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders. Chemosphere. 2013;92(4):344–50.

    Article  Google Scholar 

  45. Wu Y, Ren HP, Wang WP, et al. Experimental study of the effect of total phosphorus on physico-mechanical performance of clays. Rock Soil Mech. 2014;35(10):2823–30.

    Google Scholar 

  46. Liu XW. Effect of P2O5 and F- in phosphorus dregs on performance of cement. Res Appl Build Mater. 2006;2:10–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-shan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Js. (2019). Study on Mechanism of Phosphate-Based Cementing Material for S/S of Pb-Contaminated Soil. In: Evolution Mechanism on Structural Characteristics of Lead-Contaminated Soil in the Solidification/Stabilization Process. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1193-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1193-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1192-5

  • Online ISBN: 978-981-13-1193-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics