Skip to main content

Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Various commercial vaccines are used for immunization against hepatitis B. However, these immunotherapeutic vaccines require invasive administration, which can induce side effects, and require multiple shots to elicit an immune response, limiting their efficacy. Compared to traditional hepatitis B vaccines, polymer nanoparticles have more advantageous inherent properties as vaccine delivery carriers, providing increased stability of encapsulated antigen, the possibility of single-shot immunotherapy, and the capability of mucosal administration, which allows various routes of vaccination. In this review, we present up-to-date information on the potential of a biodegradable nanoparticle-based delivery system in treating hepatitis B. We also discuss the application of nanoparticles in various vaccines and highlighted strategies for eliciting an appropriate immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas Z, Siddiqui AR (2011) Management of hepatitis B in developing countries. World J Hepatol 3(12):292–299

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28:112–125

    Article  PubMed  Google Scholar 

  3. Zampino R, Boemio A, Sagnelli C, Alessio L, Adinolfi LE, Sagnelli E, Coppola N (2015) Hepatitis B virus burden in developing countries. World J Gastroenterol 21(42):11941–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindblad EB (2004) Aluminium adjuvants--in retrospect and prospect. Vaccine 22(27–28):3658–3668

    Article  CAS  PubMed  Google Scholar 

  5. Lindblad EB (2004) Aluminium compounds for use in vaccines. Immunol Cell Biol 82(5):497–505

    Article  CAS  PubMed  Google Scholar 

  6. Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS (2012) Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomedicine 7:6077–6093

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gomathysankar S, Halim AS, Yaacob NS (2014) Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing, a review. Arch Plast Surg 41(5):452–457

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kamath PR, Sunil D (2017) Nano-chitosan particles in anticancer drug delivery: an up-to-date review. Mini Rev Med Chem 17(15):1457–1487

    Article  CAS  PubMed  Google Scholar 

  10. Hayes M, Tiwari BK (2015) Bioactive carbohydrates and peptides in foods: an overview of sources, downstream processing steps and associated bioactivities. Int J Mol Sci 16(9):22485–22508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thauvin C, Schwarz B, Delie F, Allemann E (2017) Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles. Int J Pharm

    Google Scholar 

  12. Haaparanta AM, Jarvinen E, Cengiz IF, Ella V, Kokkonen HT, Kiviranta I, Kellomaki M (2014) Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 25(4):1129–1136

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Wang L, Liu Y, Chen X, Li J, Yang T, An W, Ma X, Pan R, Ma G (2014) Comparison of PLA microparticles and alum as adjuvants for H5N1 influenza split vaccine: adjuvanticity evaluation and preliminary action mode analysis. Pharm Res 31(4):1015–1031

    Article  CAS  PubMed  Google Scholar 

  14. Kesente M, Kavetsou E, Roussaki M, Blidi S, Loupassaki S, Chanioti S, Siamandoura P, Stamatogianni C, Philippou E, Papaspyrides C, Vouyiouka S, Detsi A (2017) Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioengineering (Basel) 4(3):75–88

    Article  Google Scholar 

  15. Abebe DG, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T (2015) Three-layered biodegradable micelles prepared by two-step self-assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromol Biosci 15(5):698–711

    Article  CAS  PubMed  Google Scholar 

  16. Zywicka B, Krucinska I, Garcarek J, Szymonowicz M, Komisarczyk A, Rybak Z (2017) Biological properties of low-toxic PLGA and PLGA/PHB fibrous nanocomposite scaffolds for osseous tissue regeneration. Evaluation of potential bioactivity. Molecules 22(11):1852–1873

    Article  CAS  PubMed Central  Google Scholar 

  17. Mir M, Ahmed N, Rehman AU (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 159:217–231

    Article  CAS  PubMed  Google Scholar 

  18. Yun S, Jun JW, Giri SS, Kim HJ, Chi C, Kim SG, Kim SW, Park SC (2017) Efficacy of PLGA microparticle-encapsulated formalin-killed Aeromonas hydrophila cells as a single-shot vaccine against A. hydrophila infection. Vaccine 35(32):3959–3965

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Ma W, Li F, Gao W, Zhao Q, Peng W, Piao J, Wu X, Wang H, Gong X, Chang J (2017) Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale 9:18711–18722

    Article  CAS  PubMed  Google Scholar 

  20. Ramezani M, Ebrahimian M, Hashemi M (2017) Current strategies in the modification of PLGA-based gene delivery system. Curr Med Chem 24(7):728–739

    Article  CAS  PubMed  Google Scholar 

  21. Sun S, Li J, Li X, Lan B, Zhou S, Meng Y, Cheng L (2016) Episcleral drug film for better-targeted ocular drug delivery and controlled release using multilayered poly-epsilon-caprolactone (PCL). Acta Biomater 37:143–154

    Article  CAS  PubMed  Google Scholar 

  22. Coimbra P, Santos P, Alves P, Miguel SP, Carvalho MP, de Sa KD, Correia IJ, Ferreira P (2017) Coaxial electrospun PCL/gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surf B Biointerfaces 159:7–15

    Article  CAS  PubMed  Google Scholar 

  23. Prashant CK, Bhat M, Srivastava SK, Saxena A, Kumar M, Singh A, Samim M, Ahmad FJ, Dinda AK (2014) Fabrication of nanoadjuvant with poly-epsilon-caprolactone (PCL) for developing a single-shot vaccine providing prolonged immunity. Int J Nanomedicine 9:937–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, Nah JW, Cho MH, Cho CS (2007) A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 28(4):735–744

    Article  CAS  PubMed  Google Scholar 

  25. Sheikh MA, Malik YS, Xing Z, Guo Z, Tian H, Zhu X, Chen X (2017) Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson’s disease (PD). Acta Biomater 54:58–68

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka S, Hayashi T, Tateyama H, Matsumura K, Hyon SH, Hirayama F (2010) Application of the bactericidal activity of epsilon-poly-l-lysine to the storage of human platelet concentrates. Transfusion 50(4):932–940

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Z, Yu J, Niu Y, Sun S, Liu Y, Saxon A, Zhang K, Li W (2016) Enhanced prophylactic and therapeutic effects of Polylysine-modified Ara h 2 DNA vaccine in a mouse model of peanut allergy. Int Arch Allergy Immunol 171(3–4):241–250

    Article  CAS  PubMed  Google Scholar 

  28. Song M, Lopez-Pena CL, McClements DJ, Decker EA, Xiao H (2017) Safety evaluation and lipid-lowering effects of food-grade biopolymer complexes (epsilon-polylysine-pectin) in mice fed a high-fat diet. Food Funct 8(5):1822–1829

    Article  CAS  PubMed  Google Scholar 

  29. Ciucurel EC, Sefton MV (2011) A poloxamine-polylysine acrylate scaffold for modular tissue engineering. J Biomater Sci Polym Ed 22(18):2515–2528

    Article  CAS  PubMed  Google Scholar 

  30. Langer R, Cleland JL, Hanes J (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 28(1):97–119

    Article  CAS  PubMed  Google Scholar 

  31. De Souza Reboucas J, Esparza I, Ferrer M, Sanz ML, Irache JM, Gamazo C (2012) Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012:474605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Fu D, Kang H, Rong G, Jin Z, Wang X, Zhao K (2017) Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr Drug Deliv 14(1):27–35

    Article  CAS  PubMed  Google Scholar 

  34. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21(13–14):1400–1408

    Article  PubMed  CAS  Google Scholar 

  35. Lugade AA, Bharali DJ, Pradhan V, Elkin G, Mousa SA, Thanavala Y (2013) Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. Nanomedicine 9(7):923–934

    Article  CAS  PubMed  Google Scholar 

  36. Ramanathan M Jr, Lee WK, Spannhake EW, Lane AP (2008) Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol 22(2):115–121

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jung SN, Kang SK, Yeo GH, Li HY, Jiang T, Nah JW, Bok JD, Cho CS, Choi YJ (2015) Targeted delivery of vaccine to dendritic cells by chitosan nanoparticles conjugated with a targeting peptide ligand selected by phage display technique. Macromol Biosci 15(3):395–404

    Article  CAS  PubMed  Google Scholar 

  38. Lebre F, Borchard G, Faneca H, Pedroso de Lima MC, Borges O (2016) Intranasal Administration of Novel Chitosan Nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol Pharm 13(2):472–482

    Article  CAS  PubMed  Google Scholar 

  39. Prego C, Paolicelli P, Diaz B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614

    Article  CAS  PubMed  Google Scholar 

  40. Premaletha K, Licy CD, Jose S, Saraladevi A, Shirwaikar A, Shirwaikar A (2012) Formulation, characterization and optimization of hepatitis B surface antigen (HBsAg)-loaded chitosan microspheres for oral delivery. Pharm Dev Technol 17(2):251–258

    Article  CAS  PubMed  Google Scholar 

  41. van der Lubben IM, Verhoef JC, van Aelst AC, Borchard G, Junginger HE (2001) Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches. Biomaterials 22(7):687–694

    Article  PubMed  Google Scholar 

  42. Valero Y, Awad E, Buonocore F, Arizcun M, Esteban MA, Meseguer J, Chaves-Pozo E, Cuesta A (2016) An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev Comp Immunol 65:64–72

    Article  CAS  PubMed  Google Scholar 

  43. Mishra N, Khatri K, Gupta M, Vyas SP (2014) Development and characterization of LTA-appended chitosan nanoparticles for mucosal immunization against hepatitis B. Artif Cells Nanomed Biotechnol 42(4):245–255

    Article  CAS  PubMed  Google Scholar 

  44. Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slutter B, Amorij JP, Jiskoot W (2012) Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine 30(36):5341–5348

    Article  CAS  PubMed  Google Scholar 

  45. Shrestha B, Rath JP (2014) Poly(vinyl alcohol)-coated chitosan microparticles act as an effective oral vaccine delivery system for hepatitis B vaccine in rat model. IET Nanobiotechnol 8(4):201–207

    Article  PubMed  Google Scholar 

  46. Layek B, Lipp L, Singh J (2015) APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 207:143–153

    Article  CAS  PubMed  Google Scholar 

  47. Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park K, Ramasamy MK, Choi KJ (2012) N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym 89(4):1289–1297

    Article  CAS  PubMed  Google Scholar 

  48. Hagenaars N, Mania M, de Jong P, Que I, Nieuwland R, Slutter B, Glansbeek H, Heldens J, van den Bosch H, Lowik C, Kaijzel E, Mastrobattista E, Jiskoot W (2010) Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. J Control Release 144(1):17–24

    Article  CAS  PubMed  Google Scholar 

  49. Cai J, Zhang W, Xu J, Xue W, Liu Z (2017) Evaluation of N-phosphonium chitosan as a novel vaccine carrier for intramuscular immunization. J Biomater Appl 32(5):677–685

    Article  CAS  PubMed  Google Scholar 

  50. Zhang G, Jia P, Cheng G, Jiao S, Ren L, Ji S, Hu T, Liu H, Du Y (2017) Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides. Carbohydr Polym 166:64–72

    Article  CAS  PubMed  Google Scholar 

  51. Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W (2017) Intranasal vaccination with Mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary mycobacterial challenge. Front Cell Infect Microbiol 7:445

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wei J, Xue W, Yu X, Qiu X, Liu Z (2017) pH sensitive phosphorylated chitosan hydrogel as vaccine delivery system for intramuscular immunization. J Biomater Appl 31(10):1358–1369

    Article  CAS  PubMed  Google Scholar 

  53. Tao W, Zheng HQ, Fu T, He ZJ, Hong Y (2017) N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: an immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice. Hum Vaccin Immunother 13(8):1818–1822

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao K, Sun Y, Chen G, Rong G, Kang H, Jin Z, Wang X (2016) Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. Carbohydr Polym 149:28–39

    Article  CAS  PubMed  Google Scholar 

  55. Wang YQ, Fan QZ, Liu Y, Yue H, Ma XW, Wu J, Ma GH, Su ZG (2016) Improving adjuvanticity of quaternized chitosan-based microgels for H5N1 split vaccine by tailoring the particle properties to achieve antigen dose sparing effect. Int J Pharm 515(1–2):84–93

    Article  CAS  PubMed  Google Scholar 

  56. Pawar D, Jaganathan KS (2016) Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: enhancement of mucosal and systemic immune response. Drug Deliv 23(1):185–194

    Article  CAS  PubMed  Google Scholar 

  57. Spinner JL, Oberoi HS, Yorgensen YM, Poirier DS, Burkhart DJ, Plante M, Evans JT (2015) Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine 33(43):5845–5853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biswas S, Chattopadhyay M, Sen KK, Saha MK (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410

    Article  CAS  PubMed  Google Scholar 

  59. Harde H, Agrawal AK, Jain S (2015) Tetanus toxoids loaded glucomannosylated chitosan based nanohoming vaccine adjuvant with improved oral stability and immunostimulatory response. Pharm Res 32(1):122–134

    Article  CAS  PubMed  Google Scholar 

  60. Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, Jin Z, Cui S (2014) Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine 9:4609–4619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Nanda RK, Hajam IA, Edao BM, Ramya K, Rajangam M, Chandra Sekar S, Ganesh K, Bhanuprakash V, Kishore S (2014) Immunological evaluation of mannosylated chitosan nanoparticles based foot and mouth disease virus DNA vaccine, pVAC FMDV VP1-OmpA in Guinea pigs. Biologicals 42(3):153–159

    Article  CAS  PubMed  Google Scholar 

  62. Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine (Lond) 9(16):2511–2529

    Article  CAS  Google Scholar 

  63. Channarong S, Chaicumpa W, Sinchaipanid N, Mitrevej A (2011) Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: the improvement of Peyer's patch targeting using a polyplex-loaded liposomes. AAPS PharmSciTech 12(1):192–200

    Article  CAS  PubMed  Google Scholar 

  64. Hagenaars N, Mastrobattista E, Verheul RJ, Mooren I, Glansbeek HL, Heldens JG, van den Bosch H, Jiskoot W (2009) Physicochemical and immunological characterization of N,N,N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res 26(6):1353–1364

    Article  CAS  PubMed  Google Scholar 

  65. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  66. Gregory AE, Titball R, Williamson D (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bramwell VW, Eyles JE, Somavarapu S, Alpar HO (2002) Liposome/DNA complexes coated with biodegradable PLA improve immune responses to plasmid encoding hepatitis B surface antigen. Immunology 106(3):412–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO (2007) Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J Microencapsul 24(6):539–552

    Article  CAS  PubMed  Google Scholar 

  69. Chen X, Liu Y, Wang L, Liu Y, Zhang W, Fan B, Ma X, Yuan Q, Ma G, Su Z (2014) Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Mol Pharm 11(6):1772–1784

    Article  CAS  PubMed  Google Scholar 

  70. Katare YK, Muthukumaran T, Panda AK (2005) Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm 301(1–2):149–160

    Article  CAS  PubMed  Google Scholar 

  71. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7(5):3926–3938

    Article  CAS  PubMed  Google Scholar 

  72. Kohli AK, Alpar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275(1–2):13–17

    Article  CAS  PubMed  Google Scholar 

  73. Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28(35):5344–5357

    Article  CAS  PubMed  Google Scholar 

  74. Nayak B, Panda AK, Ray P, Ray AR (2009) Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J Microencapsul 26(2):154–165

    Article  CAS  PubMed  Google Scholar 

  75. Shin SJ, Shin SW, Choi EJ, Lee DY, Ahn JM, Yang MS, Jang YS, Yoo HS (2005) A predictive model for the level of sIgA based on IgG levels following the oral administration of antigens expressed in Saccharomyces cerevisiae. J Vet Sci 6(4):305–309

    PubMed  Google Scholar 

  76. Vila A, Sanchez A, Evora C, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm 292(1–2):43–52

    Article  CAS  PubMed  Google Scholar 

  77. Qiu S, Wei Q, Liang Z, Ma G, Wang L, An W, Ma X, Fang X, He P, Li H, Hu Z (2014) Biodegradable polylactide microspheres enhance specific immune response induced by hepatitis B surface antigen. Hum Vaccin Immunother 10(8):2350–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jain AK, Goyal AK, Mishra N, Vaidya B, Mangal S, Vyas SP (2010) PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 387(1–2):253–262

    Article  CAS  PubMed  Google Scholar 

  79. Thomas C, Rawat A, Hope-Weeks L, Ahsan F (2011) Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 8(2):405–415

    Article  CAS  PubMed  Google Scholar 

  80. Saini V, Jain V, Sudheesh MS, Dixit S, Gaur RL, Sahoo MK, Joseph SK, Verma SK, Jaganathan KS, Murthy PK, Kohli D (2010) Humoral and cell-mediated immune-responses after administration of a single-shot recombinant hepatitis B surface antigen vaccine formulated with cationic poly(l-lactide) microspheres. J Drug Target 18(3):212–222

    Article  CAS  PubMed  Google Scholar 

  81. Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535

    Article  PubMed  Google Scholar 

  82. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eratalay A, Coskun-Ari FF, Oner F, Ozcengiz E (2010) In vitro and in vivo evaluations of PLGA microsphere vaccine formulations containing pDNA coexpressing hepatitis B surface antigen and Interleukin-2. J Microencapsul 27(1):48–56

    Article  CAS  PubMed  Google Scholar 

  84. Paolicelli P, Prego C, Sanchez A, Alonso MJ (2010) Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine (Lond) 5(6):843–853

    Article  CAS  Google Scholar 

  85. Xu W, He J, Wu G, Xiong F, Du H, Wang G (2015) Stabilization and immune response of HBsAg encapsulated within poly(lactic-co-glycolic acid) microspheres using HSA as a stabilizer. Int J Pharm 496(2):332–341

    Article  CAS  PubMed  Google Scholar 

  86. Feng L, Qi XR, Zhou XJ, Maitani Y, Wang SC, Jiang Y, Nagai T (2006) Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Control Release 112(1):35–42

    Article  CAS  PubMed  Google Scholar 

  87. Saini V, Jain V, Sudheesh MS, Jaganathan KS, Murthy PK, Kohli DV (2011) Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int J Pharm 408(1–2):50–57

    Article  CAS  PubMed  Google Scholar 

  88. Mishra N, Tiwari S, Vaidya B, Agrawal GP, Vyas SP (2011) Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 19(1):67–78

    Article  CAS  PubMed  Google Scholar 

  89. Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15(10):701–713

    Article  CAS  PubMed  Google Scholar 

  90. Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon JK, Wang C, Hickey AJ, Edwards D (2010) Immunization of Guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J 12(3):330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang T, Singh B, Li HS, Kim YK, Kang SK, Nah JW, Choi YJ, Cho CS (2014) Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 35(7):2365–2373

    Article  CAS  PubMed  Google Scholar 

  92. Liu L, Ma P, Wang H, Zhang C, Sun H, Wang C, Song C, Leng X, Kong D, Ma G (2016) Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J Control Release 225:230–239

    Article  CAS  PubMed  Google Scholar 

  93. Ma YP, Ke H, Liang ZL, Ma JY, Hao L, Liu ZX (2017) Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia. Fish Shellfish Immunol 66:345–353

    Article  CAS  PubMed  Google Scholar 

  94. Salvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, Hernandez RM, Lore K, Igartua M (2015) Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm 496(2):371–381

    Article  CAS  PubMed  Google Scholar 

  95. Wang X, Zhang Y, Xue W, Wang H, Qiu X, Liu Z (2016) Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization. J Biomater Appl 31(6):923–932

    Article  PubMed  CAS  Google Scholar 

  96. Yang HW, Ye L, Guo XD, Yang C, Compans RW, Prausnitz MR (2017) Ebola vaccination using a DNA vaccine coated on PLGA-PLL/gammaPGA nanoparticles administered using a microneedle patch. Adv Healthc Mater 6(1):2192–2659

    Article  CAS  Google Scholar 

  97. Pawar D, Mangal S, Goswami R, Jaganathan KS (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85(3 Pt A):550–559

    Article  CAS  PubMed  Google Scholar 

  98. Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, Wang C, Leng X, Song C, Kong D, Ma G (2016) Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a Nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces 8(19):11969–11979

    Article  CAS  PubMed  Google Scholar 

  99. Keijzer C, Slutter B, van der Zee R, Jiskoot W, van Eden W, Broere F (2011) PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One 6(11):e26684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma T, Wang L, Yang T, Ma G, Wang S (2014) M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm 473(1–2):296–303

    Article  CAS  PubMed  Google Scholar 

  101. Hanson MC, Bershteyn A, Crespo MP, Irvine DJ (2014) Antigen delivery by lipid-enveloped PLGA microparticle vaccines mediated by in situ vesicle shedding. Biomacromolecules 15(7):2475–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rose F, Wern JE, Ingvarsson PT, van de Weert M, Andersen P, Follmann F, Foged C (2015) Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design approach. J Control Release 210:48–57

    Article  CAS  PubMed  Google Scholar 

  103. Chudina T, Labyntsev A, Manoilov K, Kolybo D, Komisarenko S (2015) Cellobiose-coated poly(lactide-co-glycolide) particles loaded with diphtheria toxoid for per os immunization. Croat Med J 56(2):85–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Preat V, Florindo HF (2015) In vivo delivery of peptides and toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J Control Release 198:91–103

    Article  CAS  PubMed  Google Scholar 

  105. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J (2007) Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A 81((3):652–662

    Article  CAS  Google Scholar 

  106. Chong CS, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J (2005) Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102(1):85–99

    Article  CAS  PubMed  Google Scholar 

  107. Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58(6):739–747

    Article  CAS  PubMed  Google Scholar 

  108. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678

    Article  CAS  PubMed  Google Scholar 

  110. San Roman B, Irache JM, Gomez S, Tsapis N, Gamazo C, Espuelas MS (2008) Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm 70(1):98–108

    Article  CAS  PubMed  Google Scholar 

  111. Bansal V, Kumar M, Bhardwaj A, Brahmne HG, Singh H (2015) In vivo efficacy and toxicity evaluation of polycaprolactone nanoparticles and aluminum based admixture formulation as vaccine delivery system. Vaccine 33(42):5623–5632

    Article  CAS  PubMed  Google Scholar 

  112. Lee CH, Li YJ, Huang CC, Lai JY (2017) Poly(epsilon-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale 9(32):11754–11764

    Article  CAS  PubMed  Google Scholar 

  113. Jesus S, Soares E, Costa J, Borchard G, Borges O (2016) Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-epsilon-caprolactone based nanoparticles. Int J Pharm 504(1–2):59–69

    Article  CAS  PubMed  Google Scholar 

  114. Dinda AK, Bhat M, Srivastava S, Kottarath SK, Prashant CK (2016) Novel nanocarrier for oral hepatitis B vaccine. Vaccine 34(27):3076–3081

    Article  CAS  PubMed  Google Scholar 

  115. Jia S, Fan B, Dai Y, Wang G, Peng P, Jia Y (2010) Fractionation and characterization of ɛ-poly-l-lysine from Streptomyces albulus CGMCC 1986. Food Sci Biotechnol 19(2):361–366

    Article  CAS  Google Scholar 

  116. Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58(4):467–486

    Article  CAS  PubMed  Google Scholar 

  117. Yoshida T, Nagasawa T (2003) Epsilon-poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62(1):21–26

    Article  CAS  PubMed  Google Scholar 

  118. Kadlecova Z, Rajendra Y, Matasci M, Baldi L, Hacker DL, Wurm FM, Klok HA (2013) DNA delivery with hyperbranched polylysine: a comparative study with linear and dendritic polylysine. J Control Release 169(3):276–288

    Article  CAS  PubMed  Google Scholar 

  119. Machluf M, Apte RN, Regev O, Cohen S (2000) Enhancing the immunogenicity of liposomal hepatitis B surface antigen (HBsAg) by controlling its delivery from polymeric microspheres. J Pharm Sci 89(12):1550–1557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Seoul National University (SNU) Research Grant, Creative-Pioneering Research Program through Seoul National University (SNU), and National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (2015-R1A2A2A03004448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohidas B. Arote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, S.J., Ahn, M.H., Lee, Y.W., Pal, S., Sangshetti, J., Arote, R.B. (2018). Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_16

Download citation

Publish with us

Policies and ethics