Skip to main content

Silk Fibroin-Based Scaffold for Bone Tissue Engineering

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Abstract

Regeneration of diseased or damaged skeletal tissues is one of the challenge that needs to be solved. Although there have been many bone tissue engineering developed, scaffold-based tissue engineering complement the conventional treatment for large bone by completing biological and functional environment. Among many materials, silk fibroin (SF) is one of the favorable material for applications in bone tissue engineering scaffolding. SF is a fibrous protein mainly extracted from Bombyx mori. and spiders. SF has been used as a biomaterial for bone graft by its unique mechanical properties, controllable biodegradation rate and high biocompatibility. Moreover, SF can be processed using conventional and advanced biofabrication methods to form various scaffold types such as sponges, mats, hydrogels and films. This review discusses about recent application and advancement of SF as a biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

ASCs:

Adipose-derived stem cells

BK:

Broussonetia kazinoki

BMSCs:

Bone marrow derived mesenchymal stem cells

BMP-2:

Bone morphogenic protein-2

DBM:

Demineralized bone matrix

3D:

3 dimensional

ECM:

Extracellular matrix

FDA:

Food and Drug Administration

HFIP:

Hexafluoro-2-propanol

hMSCs:

Human mesenchymal stem cells

HAp:

Hydroxyapatite

MSCs:

Mesenchymal stem cells

micro-CT:

Micro computed tomography

PLGA:

Poly(lactide-co-glycolide)

PCL:

Polycarprolactam

PGA:

Polyglycolide

PEG:

Polyethylene glycole

PLA:

Polylactide

SF:

Silk fibroin

TCP:

Tricalcium phosphate

TE:

Tissue Engineering

VEGF:

Vascular endothelial growth factor

References

  1. Adachi T, Osako T, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Article  CAS  PubMed  Google Scholar 

  2. Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208(2):511–516

    Article  PubMed  Google Scholar 

  3. Amin YS, Van DSJ, Chai YC, Wauthle R, Tahmasebi BZ, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AA (2014) Bone regeneration performance of surface-treated porous titanium. Biomaterials 35(24):6172–6181

    Article  CAS  Google Scholar 

  4. Amini AR, Cato TL, Syam PN (2012) Bone tissue engineering: recent advances and challenges. Critical reviews™ in biomedical engineering 40(5):363–408

    Article  Google Scholar 

  5. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  6. Aramwit P, Sorada K, Wanchai DE, Teerapol S (2009) Monitoring of inflammatorymediators induced by Silk sericin. J Biosci Bioeng 107(5):556–561

    Article  CAS  PubMed  Google Scholar 

  7. Bhardwaj N, Sagar C, Subhas CK (2011) Freeze-gelled silk ibroin protein scaffolds for potential applications in soft tissue engineering. Int J Biol Macromol 49(3):260–267

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17

    Article  CAS  PubMed  Google Scholar 

  9. Calderón-Colón X, Xia Z, Breidenich JL, Mulreany DG, Guo Q, Uy OM, Tiffany JE, Freund DE, McCally RL, Schein OD, Elisseeff JH, Trexler MM (2012) Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials 33(33):8286–8295

    Article  PubMed  CAS  Google Scholar 

  10. Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10(4):1514–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cha JG, Cha SR, Lee DH, Shin JH, Song JE, Suh DS, Park CH, Khang G (2016) mEvaluation of osteogenesis on duck’s feet derived collagen and demineralized bone particles sponges. Polymer (Korea) 40(6):858–864

    Article  CAS  Google Scholar 

  12. Cha SR, Jang NK, Kuk H, Kim EY, Song JE, Park CH, Khang G (2014) Inflammatory response effect of duck S feet derived collagen scaffolds for bone tissue engineering. Orig Artic 5(3):84–89

    Google Scholar 

  13. Chen F, David P, Fritz V (2012) Silk cocoon (Bombyx Mori): multi-layer structure and mechanical properties. Acta Biomater 8(7):2620–2627

    Article  CAS  PubMed  Google Scholar 

  14. Chia HN, Benjamin MW (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):1–14

    Article  CAS  Google Scholar 

  15. Chirila TV, Shuko S, Laura JB, Nigel LB, Damien GH (2013) Evaluation of silk sericin as a biomaterial: in vitro growth of human corneal limbal epithelial cells on bombyx mori sericin membranes. Prog Biomater 2(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Compan AM, Kyle C, Yong H (2017) Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng 3(8):1519–1526

    Article  CAS  Google Scholar 

  17. Correia C, Bhumiratana S, Yan L, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa JB, Silva CJ, Oliveira JM, Reis RL (2017) Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv Healthc Mater 6(22)

    Google Scholar 

  19. Dalby MJM, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(5):407–413

    Google Scholar 

  20. Dalton PD, Tim W (2008) Polymeric scaffolds for bone tissue engineering. Bone 32(3):2004–2005

    Google Scholar 

  21. Dimitriou R, Elena J, Dennis M, Peter VG (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elliott NT, Fan Y (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100(1):59–74

    Article  CAS  PubMed  Google Scholar 

  23. Engler AJ, Shamik S, Sweeney HL, Dennis ED (2006) Matrix elasticity directs stem cell Lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  24. Eun JJ, Kim HM, Kim H, Jeon DY, Park CH (2014) Inflammatory responses to hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds with variation of compositions. Polymer Korea 38(2):156–163

    Article  CAS  Google Scholar 

  25. Fan H, Haifeng L, Yue W, Siew LT, James CHG (2008) Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. Cell Transplant 17(12):1389–1401

    Article  PubMed  Google Scholar 

  26. Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL Fatahi Y, Kaplan DL (2017) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol adv 36(1):68–91

    Article  PubMed  CAS  Google Scholar 

  27. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836

    Article  CAS  Google Scholar 

  28. Griffith LG, Melody AS (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    Article  CAS  PubMed  Google Scholar 

  29. Han KS, Song JE, Tripathy N, Kim H, Moon BM, Park CH, Khang G (2015) Effect of pore sizes of silk scaffolds for cartilage tissue engineering. Macromol Res 23(12):1091–1097

    Article  CAS  Google Scholar 

  30. Hardy JG, Thomas RS (2010) Composite materials based on silk proteins. Prog Polym Sci (Oxford) 35(9):1093–1115

    Article  CAS  Google Scholar 

  31. Hofmann S, Hilbe M, Fajardo RJ, Hagenmüller H, Nuss K, Arras M, Müller R, Von RB, Kaplan DL, Merkle HP, Meinel L (2013) Remodeling of tissue-engineered bone structures in vivo. Eur J Pharm Biopharm 85(1):119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hollander DH (1994) Interstitial cystitis and silk allergy. Med Hypotheses 43(3):155–156

    Article  CAS  PubMed  Google Scholar 

  33. Huang YC, Darnell K, Kevin GR, Paul HK, David JM (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Min Res 20(5):848–857

    Article  CAS  Google Scholar 

  34. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  PubMed  Google Scholar 

  35. Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A, Makino T, Kaneko H, Doita M, Kurosaka M (2009) The effect of porosity and mechanical property of a Synthetic polymer scaffold on repair of osteochondral defects. Int Orthop 33(3):821–828

    Article  PubMed  Google Scholar 

  36. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL Zhang Z (2009) Mandibular repair in rats with premineralized silk scaffolds and BMP-2-Modified bMSCs. Biomaterials 30(27):4522–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin HJ, Park J, Karageorgiou V, Kim JJ, Valluzzi R, Cebe P, Kaplan DL (2005) Water- stable silk films with reduced β-Sheet content. Adv Funct Mater 15(8):1241–1247

    Article  CAS  Google Scholar 

  38. Jithendra P, Abraham MR, Thambiran K, Asit BM, Chellan R (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5(15):7291–7298

    Article  CAS  PubMed  Google Scholar 

  39. Joly P, Duda GN, Schöne M, Welzel PB, Freudenberg U, Werner C, Petersen A (2013) Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization. PLoS One 8(9):e73545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kapoor S, Subhas CK (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32

    Article  CAS  PubMed  Google Scholar 

  41. Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH (2008) Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 30(3):405–410

    Article  CAS  PubMed  Google Scholar 

  42. Kim DK, Kim JI, Sim BR, Khang G (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C 78:571–578

    Article  CAS  Google Scholar 

  43. Kim DK, Kim JI, Hwang TI, Sim BR, Khang G (2016) Bioengineered osteoinductive broussonetia kazinoki/ silk fibroin composite scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces Acsami 9(2):1384–1394

    Article  CAS  Google Scholar 

  44. Kim H, Che L, Ha Y, Ryu W (2014) Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C 40:324–335

    Article  CAS  Google Scholar 

  45. Kim JI, Hwang TI, Ludwig EA, Park CH, Kim CS (2016) A controlled design of aligned and random nanofibers for 3D bi-functionalized Nerve conduits fabricated via a novel electrospinning set-up. Sci Rep 6:23761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19

    Article  CAS  PubMed  Google Scholar 

  47. Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  CAS  Google Scholar 

  48. Kook YJ, Lee DH, Song JE, Tripathy N, Jeon YS, Jeon HY, Oliveira JM, Reis RL, Khang G (2017) Osteogenesis evaluation of duck’s feet derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomater Res 21(1):1–7

    Article  CAS  Google Scholar 

  49. Kuk H, Kim HM, Kim SM, Kim EY, Song JE, Kwon SY, Suh DS, Park CH, Khang G (2015) Osteogenic effect of hybrid scaffolds composed of duck feet collagen and PLGA. Polymer (Korea) 39(6):846–851

    Article  CAS  Google Scholar 

  50. Kundu B, Rangam R, Subhas CK, Xungai W (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470

    Article  CAS  PubMed  Google Scholar 

  51. Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G (2017) Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Int J Biol Macromol 95:14–23

    Article  CAS  PubMed  Google Scholar 

  52. Li C, vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  CAS  PubMed  Google Scholar 

  53. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2014) Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2(42):7272–7306

    Article  CAS  PubMed  Google Scholar 

  54. Lin CY, Noboru K, Scott JH (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636

    Article  PubMed  Google Scholar 

  55. Liu H, Fan H, Wong EJW, Toh SL, Goh JCH (2008) Silk-based scaffold for ligament tissue engineering. IFMBE Proc 20:34–37 IFMBE

    Article  CAS  Google Scholar 

  56. Liu J, David GK (2014) Mechanism of guided bone regeneration : a review. Open Dent J 8:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, Ratner BD, Sage EH, Jiang S (2007) Endothelial cell migration on surface- density gradients of fibronectin, VEGF, or both proteins. Langmuir 23(22):11168–11173

    Article  CAS  PubMed  Google Scholar 

  58. Lu Q, Huang Y, Li M, Zuo B, Lu S, Wang J, Zhu H, Kaplan DL (2011) Silk fibroin electrogelation mechanisms. Acta Biomater 7(6):2394–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu Q, Hu X, Wang X, Klug JA, Lu S, Cebe P, Kaplan DL (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6(4):1380–1387

    Article  CAS  PubMed  Google Scholar 

  60. Makaya K, Terada S, Ohgo K, Asakura T (2009) Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J Biosci Bioeng 108(1):68–75

    Article  CAS  PubMed  Google Scholar 

  61. McMurray RJ, Wann AKT, Thompson CL, Connelly JT, Knight MM (2013) Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 3:3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39(4):922–931

    Article  CAS  PubMed  Google Scholar 

  63. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155

    Article  CAS  PubMed  Google Scholar 

  64. Melke J, Swati M, Sourabh G, Keita I, Sandra H (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16

    Article  CAS  PubMed  Google Scholar 

  65. Meng W, Kim SY, Yuan J, Kim JC, Kwon OH, Kawazoe N, Chen G, Ito Y, Kang IK (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18(1):81–94

    Article  PubMed  Google Scholar 

  66. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  PubMed  Google Scholar 

  67. Minoura N, Mohammadi M, Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jafari MR, Ramezani M (2018) Micro and Nanotechnologies for Bone Regeneration: recent advances and emerging designs. J Control 274(January):35–55

    Google Scholar 

  68. Murphy CM, Matthew GH (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for tissue engineering. Biomaterials 31(3):461–466

    Article  CAS  PubMed  Google Scholar 

  69. Nazarov R, Jin HJ, David LK (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726

    Article  CAS  PubMed  Google Scholar 

  70. Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31(10):2926–2933

    Article  CAS  PubMed  Google Scholar 

  71. Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671

    Article  CAS  PubMed  Google Scholar 

  72. Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL (2012) Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 8(4):1530–1542

    Article  CAS  PubMed  Google Scholar 

  73. Padol AR, Jayakumar K, Mohan K, Manochaya S (2012) Natural biomaterial silk and silk proteins : applications in tissue repair. Int J Mater Biomater Appl 2(4):19–24

    Google Scholar 

  74. Panda N, Bissoyi A, Pramanik K (2014) Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. J Biomater Sci Polym Ed 25(13):1440–1457

    Article  CAS  PubMed  Google Scholar 

  75. Pérez RJ, Elices M, Llorca J, Viney C (2002) Effect of degumming on the tensile properties of silkworm (bombyx mori) silk fiber. J Appl Polym Sci 84(7):1431–1437

    Article  CAS  Google Scholar 

  76. Pérez S, María J, Elena R, Miguel L, José LC, Cristina P (2010) Biomaterials for bone regeneration. Medicina Oral, Patologia Oral Y Cirugia Bucal 15(3):e517

    Article  Google Scholar 

  77. Petite H, Viateau V, Bensaïd W, Meunier A, De PC, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  78. Pina S, Canadas RF, Jiménez G, Perán M, Marchal JA, Reis RL, Oliveira JM (2017) Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs 205(3-4):150–163

    Article  CAS  Google Scholar 

  79. Polo CL, Magda LE, Jaime EV (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    Article  CAS  Google Scholar 

  80. Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115

    Article  CAS  PubMed  Google Scholar 

  81. Samal SK, David LK, Emo C (2013) Ultrasound sonication effects on silk fibroin protein. Macromol Mater Eng 298(11):1201–1208

    Article  CAS  Google Scholar 

  82. Santin M, Antonella M, Giuliano F, Mario C (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46(3):382–389

    Article  CAS  PubMed  Google Scholar 

  83. Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed 54(9):2816–2820

    Article  CAS  Google Scholar 

  84. Serra E, Eva D, Isabel D, Rosa MB (2010) A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Microporous Mesoporous Mater 132(3):487–493

    Article  CAS  Google Scholar 

  85. Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG (2014) Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis. J Biomater Tissue Eng 4(1):9–19

    Article  CAS  Google Scholar 

  86. She Z, Jin C, Huang Z, Zhang B, Feng Q, Xu Y (2008) Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci: Mater Med 19(12):3545–3553

    CAS  Google Scholar 

  87. Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, Chen J, Zheng Z, Zhang W, Ran J, Heng BC, Ji J, Chen W, Ouyang HW (2014) Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 35(28):8154–8163

    Article  CAS  PubMed  Google Scholar 

  88. Shin JH, Lee DH, Song JE, Cho SJ, Park CH, Khang G (2017) Effect of silk sponge concentrations on skin regeneration. Polymer (Korea) 41(1):1–6

    Article  CAS  Google Scholar 

  89. Sim BR, Kim HM, Kim SM, Kim DK, Song JE, Park H, Khang G (2016) Osteogenesis differentiation of rabbit bone marrow-mesenchymal stem cells in silk scaffold loaded with various ratios of hydroxyapatite. Polymer (Korea) 40(6):915–924

    Article  CAS  Google Scholar 

  90. Sommer MR, Manuel S, Davide C, André RS (2016) 3D printing of hierarchical silk fibroin structures. ACS Appl Mater Interfaces 8(50):34677–34685

    Article  CAS  PubMed  Google Scholar 

  91. Song JE, Tripathy N, Shin JH, Lee DH, Cha JG, Park CH, Suh DS, Khang G (2017) In vivo bone regeneration evaluation of duck’s feet collagen/PLGA scaffolds in rat calvarial defect. Macromol Res 25(10):994–999

    Article  CAS  Google Scholar 

  92. Soong HK, Kenneth RK (1984) Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91(5):479–483

    Article  CAS  PubMed  Google Scholar 

  93. Stevens B, Yanzhe Y, Arunesh M, Brent S, Kytai TN (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res – Part B Appl Biomater 85(2):573–582

    Article  CAS  Google Scholar 

  94. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  CAS  Google Scholar 

  95. Sutherland TD, James HY, Sarah W, Cheryl YH, David JM (2010) Insect silk: one name, many materials. Ann Rev Entomol 55(1):171–188

    Article  CAS  Google Scholar 

  96. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  97. Talukdar S, Nguyen QT, Chen AC, Sah RL (2011) Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 32(34):8927–8937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6(6):3100–3106

    Article  CAS  PubMed  Google Scholar 

  99. Tan Y, Richards DJ, Trusk TC, Visconti RP, Yost MJ, Kindy MS, Drake CJ, Argraves WS, Markwald RR, Mei Y (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tian M, Yang Z, Kuwahara K, Nimni ME, Wan C, Han B (2012) Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 8(2):753–762

    Article  CAS  PubMed  Google Scholar 

  101. Uebersax L, Apfel T, Nuss KMR, Vogt R, Kim HY, Meinel L, Kaplan DL, Auer JA, Merkle HP, Von RB (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85(1):107–118

    Article  CAS  PubMed  Google Scholar 

  102. Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmuller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJT, Stamatialis D, Van Blitterswijk CA, De Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci 108(40):16565–16570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vepari C, David LK (2007) Silk as a biomaterial. Prog Polym Sci (Oxford) 32(8–9):991–1007

    Article  CAS  Google Scholar 

  104. Wang M, Jin HJ, David LK, Gregory CR (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864

    Article  CAS  Google Scholar 

  105. Wang X, Jonathan AK, Gary GL, David LK (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker HC, Kaplan DL (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Y, Kim HJ, Gordana VN, David LK (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064–6082

    Article  CAS  PubMed  Google Scholar 

  108. Weir MD, Xu HK (2010) Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater 6(10):4118–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wen CM, Ye ST, Zhou LX, Yu Y (1990) Silk-induced asthma in children: a report of 64 cases. Ann Allergy 65(5):375–378

    CAS  PubMed  Google Scholar 

  110. Won YW, Amit NP, David AB (2014) Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21):5627–5635

    Article  CAS  PubMed  Google Scholar 

  111. Yan LP, Silva CJ, Ribeiro VP, Miranda GV, Correia C, Da SMA, Sousa RA, Reis RM, Oliveira AL, Oliveira JM, Reis RL (2016) Tumor growth suppression induced by biomimetic silk fibroin hydrogels. Sci Rep 6:31037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yan LP, Oliveira JM, Oliveira AL, Reis RL (2017) Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. J tissue eng regen med 11(11):3168–3177

    Article  CAS  PubMed  Google Scholar 

  113. Yao D, Sen D, Lu Q, Hu X, Kaplan DL, Zhang B, Zhu H (2012) Salt-leached silk scaffolds with tunable mechanical properties. Biomacromolecules 13(11):3723–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yucel T, Peggy C, David LK (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97(7):2044–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yucel T, Nikola K, Gary GL, Tim JL, David LK (2010) Non-equilibrium silk fibroin adhesives. J Struct Biol 170(2):406–412

    Article  CAS  PubMed  Google Scholar 

  116. Zadpoor AA (2015) Bone Tissue Regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245

    Article  CAS  PubMed  Google Scholar 

  117. Zaoming W, Rosa C, Enrique FC, Richard FL (1996) Partial characterization of the silk allergens in mulberry silk extract. J Investig Allergol Clin Immunol 6(4):237–241

    CAS  PubMed  Google Scholar 

  118. Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057

    Article  CAS  PubMed  Google Scholar 

  119. Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y (2010) The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater 6(8):3021–3028

    Article  CAS  PubMed  Google Scholar 

  121. Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X (2009) Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45(3):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B3010270) and Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, South Korea (HI15C2996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, J.H., Kim, D.K., Song, J.E., Oliveira, J.M., Reis, R.L., Khang, G. (2018). Silk Fibroin-Based Scaffold for Bone Tissue Engineering. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_20

Download citation

Publish with us

Policies and ethics