Skip to main content

Substrate Factors that Influence Cellulase Accessibility and Catalytic Activity During the Enzymatic Hydrolysis of Lignocellulosic Biomass

  • Chapter
  • First Online:

Abstract

The development of a renewable, biomass based, “biorefinery” process for fuels and chemicals will be crucial if we are to transit to a more environmentally friendly economy. However, the limited efficacy of the “cellulase mixture” to break down the polysaccharides within lignocellulose into sugar platform is still the bottleneck. Although the catalytic activities of cellulases are comparable with other polysaccharide-degrading enzymes such as amylases, the hydrolytic potential of cellulase enzymes toward pretreated lignocellulosic substrates is much lower. This is primarily due to the limited accessibility of the enzymes to most of the glycosidic bonds and the inhibitory compounds naturally existed and/or derived from biomass deconstruction process.

In this chapter, the major substrate characteristics of pretreated biomass (e.g., gross fiber characters, lignin/hemicellulose content/location, and cellulose allomorph/crystallinity/DP) that influence the accessibility and the hydrolytic performance of cellulase enzymes will be systematically discussed, in combination with various methods that have been used to quantify the changes in the accessibility of lignocellulosic substrate at the macroscopic (fiber), microscopic (fibril), and nanoscopic (microfibril) levels. In addition, the influence of potentially inhibitory biomass-derived soluble compounds on the slowdown of enzymatic hydrolysis, as well as their possible inhibitory mechanisms such as reversible/irreversible inhibition and adsorption/precipitation of the major enzyme activities (exo-/endo-glucanase, β-glucosidase, xylanase activities, etc.), will be elucidated. The possible solutions/strategies to improve cellulose accessibility and to overcome various inhibitors will be also introduced. This chapter will show how overall protein/enzyme loading required to achieve effective cellulose hydrolysis can be significantly reduced by tailoring enzyme mixture for different biomass substrates and the various types of pretreatment used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16(4):535–545

    Article  CAS  Google Scholar 

  • Andrić P, Meyer AS, Pa J et al (2010a) Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl Biochem Biotechnol 160:280–297

    Article  CAS  PubMed  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA et al (2010b) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol adv 28:308–324

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4(1):3–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asenjo JA (1983) Maximizing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose. Biotechnol Bioeng 25:3185–3190

    Article  CAS  PubMed  Google Scholar 

  • Baker JO, Ehrman CI, Adney WS et al (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotechnol 70-2:395–403

    Article  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS et al (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:119–129

    Article  CAS  Google Scholar 

  • Baumann MJ, Borch K, Westh P (2011) Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnol Biofuels 4:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N et al (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Boisset C, Petrequin C, Chanzy H et al (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 72(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Bura R, Bothast RJ, Mansfield SD et al (2003) Optimization of SO2-catalyzed steam pretreatment of corn fiber for ethanol production. Appl Biochem Biotechnol 106:319–335

    Article  Google Scholar 

  • Cantarella M, Cantarella L, Alberto Gallifuoco AS et al (2004a) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20(1):200–206

    Article  CAS  PubMed  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A et al (2004b) Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 39:1533–1542

    Article  CAS  Google Scholar 

  • Cantarella M, Mucciante C, Cantarella L (2014) Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor. Bioresour Technol 156:48–56

    Article  CAS  PubMed  Google Scholar 

  • Chandra RP, Bura R, Mabee WE et al (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Engin/Biotechnol 108:159–169

    Google Scholar 

  • Chandra RP, Chu QL, Hu JG et al (2016) The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresour Technol 199:135–141

    Article  CAS  PubMed  Google Scholar 

  • Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 15:460–475

    Article  CAS  PubMed  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  • Duarte GC, Moreira LRS, Jaramillo PMD et al (2012) Biomass-derived inhibitors of holocellulases. BioEnergy Res 5:768–777

    Article  CAS  Google Scholar 

  • Fan LT, Lee Y (1983) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: derivation of a mechanistic kinetic model. Biotechnol Bioeng 25:2707–2733

    Article  CAS  PubMed  Google Scholar 

  • Gao DH, Chundawat SPS, Krishnan C et al (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101(8):2770–2781

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Chundawat SPS, Uppugundla N et al (2011) Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass. Biotechnol Bioeng 108:1788–1800

    Article  CAS  PubMed  Google Scholar 

  • García-Aparicio MP, Ballesteros I, González A et al (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129–132:278–288

    Article  PubMed  Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:149–159

    Article  CAS  Google Scholar 

  • Gourlay K, Hu J, Arantes V et al (2015) The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase- And swollenin-induced deconstruction of lignocellulosic substrates. J Biol Chem 290(5):2938–2945

    Article  CAS  PubMed  Google Scholar 

  • Gregg D, Saddler JN (1996) Factor affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:125–129

    Article  Google Scholar 

  • Gusakov AV, Sinitsyn AP (1992) A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and beta-glucosidase activity on the inhibition pattern. Biotechnol Bioeng 40:663–671

    Article  CAS  PubMed  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI et al (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Hannuksela T, Holmbom B (2004) Sorption of mannans to different fiber surfaces: an evolution of understanding, ACS symposium series, vol 864. ACS Publications, Washington, DC

    Google Scholar 

  • Hannuksela T, Fardim P, Holmbom B (2003) Sorption of spruce O-acetylated galactoglucomannans onto different pulp fibres. Cellulose 10:317–324

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Hodge DB, Karim MN, Schell DJ et al (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948

    Article  CAS  PubMed  Google Scholar 

  • Hu J (2013) The role of accessory enzymes in enhancing the effective hydrolysis of the cellulosic component of pretreated biomass, pp 1–209

    Google Scholar 

  • Hu J (2014) The role of accessory enzymes in enhancing the effective hydrolysis of the cellulosic component of pretreated biomass. The University of British Columbia

    Google Scholar 

  • Hu J, Arantes V, Pribowo A et al (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7(7):2308–2308

    Article  CAS  Google Scholar 

  • Hu J, Chandra R, Arantes V et al (2015a) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Gourlay K, Arantes V et al (2015b) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. ChemSusChem 8(5):901–907

    Article  CAS  PubMed  Google Scholar 

  • Humbird D, Mohagheghi A, Dowe N et al (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog 26(5):1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Humpula JF, Uppugundla N, Vismeh R et al (2014) Probing the nature of AFEX-pretreated corn stover derived decomposition products that inhibit cellulase activity. Bioresour Technol 152:38–45

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Zhang X, Bao J (2009) Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol 159:696–707

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Irwin DC, Walker LP et al (1998) Factorial optimization of a six-cellulase mixture. Biotechnol Bioeng 58:139–149

    Article  Google Scholar 

  • Kim Y, Ximenes E, Mosier NS et al (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12(7):2633–2641

    Article  CAS  PubMed  Google Scholar 

  • Kothari UD, Lee YY (2011) Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc. Appl Biochem Biotechnol 165:1391–1405

    Article  CAS  PubMed  Google Scholar 

  • Kristensen JB (2008) Enzymatic hydrolysis of lignocellulose Substrate Interactions and high solids loadings

    Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Wyman CE (2014) Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111(7):1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Rodriguez ME, York SW et al (2000) Effects of Ca(OH)(2) treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD, Jennings EW, Mohagheghi A et al (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels 4:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mes-Hartree M, Saddler JN (1983) The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic-hydrolysis of cellulose. Biotechnol Lett 5:531–536

    Article  CAS  Google Scholar 

  • Meyer AS, Rosgaard L, Sorensen HR (2009) The minimal enzyme cocktail concept for biomass processing. J Cereal Sci 50(3):337–344

    Article  CAS  Google Scholar 

  • Mosier NS, Hall P, Ladisch CM et al (1999) Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol 65:23–40

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Niu K, Chen P, Zhang X et al (2009) Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. J Chem Technol Biotechnol 84:1240–1245

    Article  CAS  Google Scholar 

  • Ohgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42(5):834–839

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B, Galbe M et al (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb Technol 19(6):470–476

    Article  CAS  Google Scholar 

  • Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41:846–853

    Google Scholar 

  • Pribowo AY, Hu J, Arantes V et al (2013) The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover. Biotechnol Biofuels 6(1):80–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing Q, Wyman CE (2011) Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol 102(2):1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  CAS  PubMed  Google Scholar 

  • Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims REH, Mabee W, Saddler JN et al (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:126–136

    Article  CAS  Google Scholar 

  • Sineiro J, Dominguez H, Núñez MJ et al (1997) Inhibition of cellulase activity by sunflower polyphenols. Biotechnol Lett 19(6):521–524

    Article  CAS  Google Scholar 

  • Shevchenko SM, Chang K, Robinson J, Saddler JN (2000) Optimization of monosaccharide recovery by posthydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol 72:207–211

    Google Scholar 

  • Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant-cell walls. Science 306(5705):2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Soudham VP, Alriksson B, Jönsson LJ (2011) Reducing agents improve enzymatic hydrolysis of cellulosic substrates in the presence of pretreatment liquid. J Biotechnol 155:244–250

    Article  CAS  PubMed  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? opportunities for cost reduction. Biofuels Bioproducts & Biorefining-Biofpr 6(2):159–176

    Article  CAS  Google Scholar 

  • Takagi M (1984) Inhibition of cellulase by fermentation products. Biotechnol Bioeng 26:1506–1507

    Google Scholar 

  • Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 48:239–247

    Article  CAS  PubMed  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Prog 17:110–117

    Article  CAS  PubMed  Google Scholar 

  • Tu MB, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23:398–406

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu JH, Feng H et al (2011) Fractal kinetic analysis of polymers/nonionic surfactants to eliminate lignin inhibition in enzymatic saccharification of cellulose. Bioresour Technol 102(3):2890–2896

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  CAS  PubMed  Google Scholar 

  • Ximenes E, Kim Y, Mosier N et al (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46(3–4):170–176

    Article  CAS  Google Scholar 

  • Yang B, Dai Z, Ding S-Y et al (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450

    Article  CAS  Google Scholar 

  • Zhai R, Hu J, Saddler JN (2016) What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficacy of cellulase enzyme mixtures? ACS Sustain Chem Eng 4(6):3429–3436

    Article  CAS  Google Scholar 

  • Zhang P, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol Bioeng 88:126–136

    Google Scholar 

  • Zhang J, Viikari L (2012) Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour Technol 117:286–291

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Himmel MEE, Mielenz JRR, Zhang YP, Himmel MEE, Mielenz JRR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinguang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, J., Zhai, R., Tian, D., Saddler, J.N. (2018). Substrate Factors that Influence Cellulase Accessibility and Catalytic Activity During the Enzymatic Hydrolysis of Lignocellulosic Biomass. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_13

Download citation

Publish with us

Policies and ethics