Skip to main content

Translational Biomarkers: Application in the Clinical Development of Combination Therapies

  • Chapter
  • First Online:
Development of Antibody-Based Therapeutics

Abstract

Development of appropriate pharmacodynamic and safety markers early in drug development can result in a higher probability of success for new drug candidates. As the overarching goal of cancer therapy is to effectively eradicate cancer in a manner that is tolerable and safe for use in the intended patient population, application of biomarkers can facilitate effective patient selection with a positive impact on the final therapeutic outcome. Additionally, combination therapies for the treatment of cancer have emerged as an effective way to anticipate and overcome cancer heterogeneity and resistance. With the emergence of cancer immune oncology (IO), clinical trials for the combination of traditional oncology drugs and immune checkpoint blockade are ongoing. The discussions in this chapter are focused on the use of current and emergent biomarkers in the design and development of treatment combinations for cancer, with a special emphasis on emerging IO therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ascopost.com/News/57874

  2. 2.

    https://www.gene.com/media/press-releases/14701/2017-12-10/phase-iii-immotion151-study-showed-genen

  3. 3.

    https://www.bio.org/press-release/bio-releases-largest-study-ever-clinical-development-success-rates

  4. 4.

    Arthur Levinson: Presentation in October 2003.

  5. 5.

    https://www.keytruda.com/static/pdf/keytruda-pd-l1-expression-testing-guide.pdf

  6. 6.

    https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm

  7. 7.

    https://www.mrc.ac.uk/research/initiatives/experimental-medicine

Abbreviations

BIO:

Biotechnology innovation orgaization

CAP:

College of American Pathologists

CLIA:

Clinical Laboratory Improvement Amendments

CO:

Companion diagnostics

FDA:

Food and Drug Administration

FFPE:

Formalin fixed paraformaldehyde embedded

FIH:

First-in-human dose

GEP:

Gene expression profile

GLP:

Good laboratory practice

H&E:

Hematoxylin and eosin

HED:

Human equivalent dose

HLA:

Human leukocyte antigen

IHC:

Immunohistochemistry test

IO:

Immuno-oncology

irAEs:

Immune-related adverse events

MABEL:

Minimally anticipated biological effect level

MHC:

Major histocompatibility complex

MMR:

DNA mismatch repair

MoA:

Mechanism of action

NHP:

Nonhuman primates

NOAEL:

No observed adverse effect level

NSCLC:

Non-small cell lung cancer

PBMC:

Peripheral blood mononuclear cells

PD:

Pharmacodynamic

PFS:

Progression-free survival

PoC:

Proof of concept

PoM:

Proof of mechanism

RO:

Receptor occupancy

TCR:

T-cell receptor

TPS:

Tumor proportion score

TRAE:

Treatment-related adverse events

VEGF:

Vascular endothelial growth factor

References

  • Agoram BM. Use of pharmacokinetic/ pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol. 2009;67(2):153ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Angelo M, Bendall SC, Finck R, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436ā€“42.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ayers M, Lunceford J, Nebozhyn M, et al. IFN-Ī³-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930ā€“40.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ballman KV. Biomarker: predictive or prognostic? J Clin Oncol. 2015;33(33):3968ā€“71.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Berman D, Parker SM, Siegel J, et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 2010;10:11.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bosslet K, Straub R, Blumrich M, et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res. 1998;58(6):1195ā€“201.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13(8):473ā€“86.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent antiā€“programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167ā€“75.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98ā€“106.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cabel L, Riva F, Servois V, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol. 2017;28(8):1996ā€“2001.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94(1):41ā€“53.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cha E, Klinger M, Hou Y, et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med. 2014;6(238):238ā€“70.

    Google ScholarĀ 

  • Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559ā€“74.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chang S, Kohrt H, Maecker HT. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63(7):713ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chester C, Maecker HT. Algorithmic tools for mining high-dimensional cytometry data. J Immunol. 2015;195(3):773ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cooper ZA, Frederick DT, Juneja VR, et al. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology. 2013;2(10):e26615.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dancey JE, Dobbin KK, Groshen S, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010;16(6):1745ā€“55.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Davis JC, Furstenthal L, Desai AA, et al. The microeconomics of personalized medicine: todayā€œs challenge and tomorrowā€s promise. Nat Rev Drug Discov. 2009;8(4):279ā€“86.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fong L, Kwek SS, Oā€™Brien S, et al. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 2009;69(2):609ā€“15.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fong L, Oh DY, Cham J, et al. T cell repertoire diversification is associated with immune related toxicities following CTLA-4 blockade in cancer patients. Cancer Res. 2016;77(6), canres.2324.2016-1330.

    Google ScholarĀ 

  • Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225ā€“31.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Frei E III, Freireich EJ. Progress and perspectives in the chemotherapy of acute leukemia. Adv Chemother. 1965;2:269ā€“98.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Funt S, Charen AS, Yusko E, et al. Correlation of peripheral and intratumoral T-cell receptor (TCR) clonality with clinical outcomes in patients with metastatic urothelial cancer (mUC) treated with atezolizumab. J Clin Oncol. 2017;34:3005.

    Google ScholarĀ 

  • Galon J. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of nonā€“small-cell lung cancer. N Engl J Med. 2015;372(21):2018ā€“28.

    PubMedĀ  Google ScholarĀ 

  • Giesen C, Wang HA, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Goldberg SB, Narayan A, Kole AJ, et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res. 2018;24(8):1872ā€“80. clincanres.1341.2017.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2(2):e000213.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577ā€“81.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Guibert N, Mazieres J, Delaunay M, et al. Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment of lung adenocarcinoma. Oncotarget. 2017;8(23):38056ā€“60.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hadrup SR, Bakker AH, Shu CJ, et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods. 2009;6(7):520ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hamid O, Schmidt H, Nissan A, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9(1):204.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov. 2016;15(12):817ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005ā€“10.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hodi FS, Lee SJ, McDermott DF, et al. Multicenter, randomized phase II trial of GM-CSF (GM) plus ipilimumab (Ipi) versus Ipi alone in metastatic melanoma: E1608. J Clin Oncol. 2013;31(Suppl 18):CRA9007.

    Google ScholarĀ 

  • Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014a;2(7):632ā€“42.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hodi FS, Lee S, McDermott DF, et al. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA. 2014b;312(17):1744ā€“53.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huss DJ, Mehta DS, Sharma A, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194(1):84ā€“92.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Iijima Y, Hirotsu Y, Amemiya K, et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur J Cancer. 2017;86:349ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ilie M, Hofman V, Dietel M, et al. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 2016;468(5):511ā€“25.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kerr KM, Tsao M-S, Nicholson AG, et al. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol. 2015;10(7):985ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Khanna R, Guler I, Nerkar A. Fail often, fail big, and fail fast? Learning from small failures and R&D performance in the pharmaceutical industry. Acad Manag J. 2016;59(2):436ā€“59.

    Google ScholarĀ 

  • Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497ā€“508.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867ā€“76. https://doi.org/10.1056/NEJMoa1408868.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23ā€“34.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409ā€“13.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee JW, Weiner RS, Sailstad JM, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res. 2005;22(4):499ā€“511.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee JW, Kelley M, King LE, et al. Bioanalytical approaches to quantify ?Total? And ?Free? Therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99ā€“110.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liang M, Schwickart M, Schneider AK, et al. Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development. Cytometry B Clin Cytom. 2016;90(2):117ā€“27.

    PubMedĀ  Google ScholarĀ 

  • Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol. 2009;27(24):4027ā€“34.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Manson G, Norwood J, Marabelle A, et al. Biomarkers associated with checkpoint inhibitors. Ann Oncol. 2016;27(7):1199ā€“206.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Marton MJ, Weiner R. Practical guidance for implementing predictive biomarkers into early phase clinical studies. Biomed Res Int. 2013;2013:891391ā€“9.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Masucci GV, Cesano A, Hawtin R, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I ? Pre-analytical and analytical validation. J Immunother Cancer. 2016;4(1):1129.

    Google ScholarĀ 

  • McDermott JE, Wang J, Mitchell H, et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn. 2013;7(1):37ā€“51.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • McNeel DG. TCR diversityā€”a universal cancer immunotherapy biomarker? J Immunother Cancer. 2016;4(1):69.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Melero I, Berman DM, Aznar MA, et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 2015;15(8):457ā€“72.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Muller PY, Milton M, Lloyd P, et al. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr Opin Biotechnol. 2009;20(6):722ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Oh DY, Cham J, Zhang L, et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 2017;77(6):1322ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Osada T, Chong G, Tansik R, et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 2008;57(8):1115ā€“24.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217ā€“21.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Page DB, Yuan J, Redmond D, et al. Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res. 2016;4(10):835ā€“44.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252ā€“64.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Patel SP, Kim DW, Bassett RL, et al. A phase II study of ipilimumab plus temozolomide in patients with metastatic melanoma. Cancer Immunol Immunother. 2017;33(17):1889ā€“8.

    Google ScholarĀ 

  • Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015a;372(21):2006ā€“17.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Postow MA, Manuel M, Wong P, et al. Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. J Immunother Cancer. 2015b;3(1):23.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Puzanov I. Combining targeted and immunotherapy: BRAF inhibitor dabrafenib (D) Ā± the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM). J Transl Med. 2015;13(1):K8.

    PubMed CentralĀ  Google ScholarĀ 

  • Rationalizing combination therapies. Nat Med. 2017;23(10):1113.

    Google ScholarĀ 

  • Ribas A, Tumeh PC. The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res. 2014;20(19):4982ā€“4.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ribas A, Butler M, Lutzky J, et al. Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. J Clin Oncol. 2017a;33:3003.

    Google ScholarĀ 

  • Ribas A, Hodi FS, Lawrence D. KEYNOTE-022 update: phase 1 study of first-line pembrolizumab (pembro) plus dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma. Ann Oncol. 2017b;28(Suppl 5):v428ā€“48.

    Google ScholarĀ 

  • Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Robbins PF, Lu Y-C, El-Gamil M, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747ā€“52.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Robert L, Tsoi J, Wang X, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014;20(9):2424ā€“32.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Saber H, Gudi R, Manning M, et al. An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharmacol. 2016;81:448ā€“56.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol. 2016;16(7):449ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Schindler K, Harmankaya K, Kuk D, et al. Correlation of absolute and relative eosinophil counts with immune-related adverse events in melanoma patients treated with ipilimumab. J Clin Oncol. 2017;32:9096.

    Google ScholarĀ 

  • Shahabi V, Berman D, Chasalow SD, et al. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J Transl Med. 2013;11(1):75.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205ā€“14.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189ā€“99.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Snyder A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade. N Engl J Med. 2015;372(8):783.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Stewart JJ, Green CL, Jones N, et al. Role of receptor occupancy assays by flow cytometry in drug development. Cytometry B Clin Cytom. 2016;90(2):110ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Subudhi SK, Aparicio A, Gao J, et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc Natl Acad Sci U S A. 2016;113(42):11919ā€“24.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Suh HY, Peck CC, Yu K-S, Lee H. Determination of the starting dose in the first-in-human clinical trials with monoclonal antibodies: a systematic review of papers published between 1990 and 2013. Drug Des Devel Ther. 2016;10:4005ā€“16.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sullivan RJ, Gonzalez R, Lewis KD, et al. Atezolizumab (A) + cobimetinib (C) + vemurafenib (V) in BRAFV600-mutant metastatic melanoma (mel): updated safety and clinical activity. J Clin Oncol. 2017;35:3057.

    Google ScholarĀ 

  • Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018ā€“28.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tarhini AA, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-Ī²1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer. 2015;3(1):39.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ā€“37.

    Google ScholarĀ 

  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207ā€“12.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275ā€“87.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641ā€“5.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568ā€“71.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207ā€“11.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • van der Veldt AAM, Hendrikse NH, Smit EF, et al. Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients. Eur J Nucl Med Mol Imaging. 2010;37(10):1950ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • van Rooij N, van Buuren MM, Philips D, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31(32):e439ā€“42.

    PubMedĀ  Google ScholarĀ 

  • Waitz R, Solomon SB, Petre EN, et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 2012;72(2):430ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Williams GW. The other side of clinical trial monitoring; assuring data quality and procedural adherence. Clin Trials. 2006;3(6):530ā€“7.

    PubMedĀ  Google ScholarĀ 

  • Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013a;369(2):122ā€“33.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wolchok JD, Hodi FS, Weber JS, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013b;1291(1):1ā€“13.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345ā€“56.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med. 2011;364(11):985ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Xi L, Pham TH-T, Payabyab EC, et al. Circulating tumor DNA as an early indicator of response to T-cell transfer immunotherapy in metastatic melanoma. Clin Cancer Res. 2016;22(22):5480ā€“6.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sukumar, S., Caculitan, N.G. (2018). Translational Biomarkers: Application in the Clinical Development of Combination Therapies. In: Tabrizi, M., Bornstein, G., Klakamp, S. (eds) Development of Antibody-Based Therapeutics. Adis, Singapore. https://doi.org/10.1007/978-981-13-0496-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0496-5_12

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-13-0495-8

  • Online ISBN: 978-981-13-0496-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics