Skip to main content

Pharmacological Prevention of the Toxicity Induced by Environmental Nanomaterials

  • Chapter
  • First Online:
Nanotoxicology in Caenorhabditis elegans

Abstract

An increasing evidence has suggested that surface chemical modifications may not be able to effectively or completely reduce the toxicity of nanomaterials under certain physiological conditions or genetic backgrounds. Along with the progress on different surface chemical modifications of nanomaterials, the design of effective pharmacological prevention strategies against the toxicity of nanomaterials has received the attention gradually. In this chapter, we will introduce and discuss the value and progress on using C. elegans as an in vivo assay system to design different effective pharmacological prevention strategies against the toxicity of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samanta A, Medintz IL (2016) Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale 8(17):9037–9095

    Article  CAS  PubMed  Google Scholar 

  2. Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116(7):4260–4317

    Article  CAS  PubMed  Google Scholar 

  3. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao S (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond photocatalysis. Chem Soc Rev 45(8):2308–2326

    Article  CAS  PubMed  Google Scholar 

  5. Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, Gautam RK, Baldantoni D, Rossi M, Sharma SK, Chattopadhyaya MC, Giugni M, Meric S (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 92:22–37

    Article  CAS  PubMed  Google Scholar 

  6. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mukherjee S, Patra CR (2016) Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 8(25):12444–12470

    Article  CAS  PubMed  Google Scholar 

  8. Ji H, Sun H, Qu X (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189

    Article  CAS  PubMed  Google Scholar 

  9. Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol 91:42–57

    Article  CAS  PubMed  Google Scholar 

  10. Hu X, Li D, Gao Y, Mu L, Zhou Q (2016) Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ Int 94:8–23

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, Gao H, Koski K, Hurt R (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45(6):1750–1780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang D-Y (2016) Biological effects, translocation, and metabolism of quantum dots in nematode Caenorhabditis elegans. Toxicol Res 5:1003–1011

    Article  CAS  Google Scholar 

  13. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  14. Bai X, Liu F, Liu Y, Li C, Wang S, Zhou H, Wang W, Zhu H, Winkler DA, Yan B (2017) Toward a systematic exploration of nano-bio interactions. Toxicol Appl Pharmacol 323:66–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, Tao J (2017) Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C Mater Biol Appl 77:1363–1375

    Article  CAS  PubMed  Google Scholar 

  16. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363

    Article  CAS  PubMed  Google Scholar 

  17. Amin ML, Joo JY, Yi DK, An SS (2015) Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release 207:131–142

    Article  CAS  PubMed  Google Scholar 

  18. Cheng LC, Jiang X, Wang J, Chen C, Liu RS (2013) Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5(9):3547–2569

    Article  CAS  PubMed  Google Scholar 

  19. Wu Q-L, Li Y-X, Li Y-P, Zhao Y-L, He L, Wang H-F, Wang D-Y (2013) Crucial role of biological barrier at the primary targeted organs in controlling translocation and toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Nanoscale 5:11166–11178

    Article  CAS  PubMed  Google Scholar 

  20. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y-L, Wang X, Wu Q-L, Li Y-P, Wang D-Y (2015) Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater 283:480–489

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y-L, Wang X, Wu Q-L, Li Y-P, Tang M, Wang D-Y (2015) Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res 4:399–408

    Article  CAS  Google Scholar 

  23. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    Article  PubMed  CAS  Google Scholar 

  24. Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin JJ, Zhou YT, Gao X, Fang Y, Nie G, Zhao Y (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Article  CAS  PubMed  Google Scholar 

  25. Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616-617:29–37

    Article  CAS  PubMed  Google Scholar 

  26. Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L, Wang D-Y (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5:6088–6096

    Article  CAS  PubMed  Google Scholar 

  27. Zhang D, Deng X, Ji Z, Shen X, Dong L, Wu M, Gu T, Liu Y (2010) Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice. Nanotechnology 21:175101

    Article  CAS  PubMed  Google Scholar 

  28. Anastassopoulou CG, Fuchs BB, Mylonakis E (2011) Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des 17(13):1225–1233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Muhammed M, Arvanitis M, Mylonakis E (2016) Whole animal HTS of small molecules for antifungal compounds. Expert Opin Drug Discov 11(2):177–1784

    Article  CAS  PubMed  Google Scholar 

  30. Pukkila-Worley R, Holson E, Wagner F, Mylonakis E (2009) Antifungal drug discovery through the study of invertebrate model hosts. Curr Med Chem 16(13):1588–1595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mathew MD, Mathew ND, Miller A, Simpson M, Au V, Garland S, Gestin M, Edgley ML, Flibotte S, Balgi A, Chiang J, Giaever G, Dean P, Tung A, Roberge M, Roskelley C, Forge T, Nislow C, Moerman D (2016) Using C. elegans forward and reverse genetics to identify new compounds with anthelmintic activity. PLoS Negl Trop Dis 10(10):e0005058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, Stasiuk S, Schertzberg M, Angus McQuibban G, Caffrey CR, Cutler SR, Tyers M, Giaever G, Nislow C, Fraser AG, MacRae CA, Gilleard J, Roy PJ (2015) Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun 6:7485

    Article  PubMed  CAS  Google Scholar 

  33. Rajamuthiah R, Fuchs BB, Jayamani E, Kim Y, Larkins-Ford J, Conery A, Ausubel FM, Mylonakis E (2014) Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus. PLoS One 9(2):e89189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bae YK, Sung JY, Kim YN, Kim S, Hong KM, Kim HT, Choi MS, Kwon JY, Shim J (2012) An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS One 7(9):e42441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Johnston PA, Shun TY, Lazo JS, Perlmutter DH, Silverman GA, Pak SC (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 5(11):e15460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sleigh JN, Buckingham SD, Esmaeili B, Viswanathan M, Cuppen E, Westlund BM, Sattelle DB (2011) A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds. Hum Mol Genet 20(2):245–260

    Article  PubMed  CAS  Google Scholar 

  37. Schwendeman AR, Shaham S (2016) A high-throughput small molecule screen for C. elegans linker cell death inhibitors. PLoS One 11(10):e0164595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schmeisser K, Fardghassemi Y, Parker JA (2017) A rapid chemical-genetic screen utilizing impaired movement phenotypes in C. elegans: input into genetics of neurodevelopmental disorders. Exp Neurol 293:101–114

    Article  PubMed  CAS  Google Scholar 

  39. Sun CL, Zhang H, Liu M, Wang W, Crowder CM (2017) A screen for protective drugs against delayed hypoxic injury. PLoS One 12(4):e0176061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim W, Hendricks GL, Lee K, Mylonakis E (2017) An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs. Expert Opin Drug Discov 12(6):625–633

    Article  CAS  PubMed  Google Scholar 

  41. Grotewiel M, Bettinger JC (2015) Drosophila and Caenorhabditis elegans as discovery platforms for genes involved in human alcohol use disorder. Alcohol Clin Exp Res 39(8):1292–1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wolozin B, Gabel C, Ferree A, Guillily M, Ebata A (2011) Watching worms whither: modeling neurodegeneration in C elegans. Prog Mol Biol Transl Sci 100:499–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Link EM, Hardiman G, Sluder AE, Johnson CD, Liu LX (2000) Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1(2):203–217

    Article  CAS  PubMed  Google Scholar 

  44. Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177:101–110

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W-M, Lv T, Li M, Wu Q-L, Yang L-S, Liu H, Sun D-F, Sun L-M, Zhuang Z-H, Wang D-Y (2013) Beneficial effects of wheat gluten hydrolysate to extend lifespan and induce stress resistance in nematode Caenorhabditis elegans. PLoS One 8(9):e74553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rui Q, Lu Q, Wang D-Y (2009) Administration of Bushenkangshuai Tang alleviates the UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3(1):76–90

    Article  Google Scholar 

  47. Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D (2016) Folate acts in E. coli to accelerate C. elegans aging independently of bacterial biosynthesis. Cell Rep 14(7):1611–1620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cai Y, Cao X, Aballay A (2014) Whole-animal chemical screen identifies colistin as a new immunomodulator that targets conserved pathways. MBio 5(4):e01235–e01214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. O’Reilly LP, Long OS, Cobanoglu MC, Benson JA, Luke CJ, Miedel MT, Hale P, Perlmutter DH, Bahar I, Silverman GA, Pak SC (2014) A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency. Hum Mol Genet 23(19):5123–5132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dormandy TL (1980) Free-radical reaction in biological systems. Ann R Coll Surg Engl 62(3):188–194

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Mason RP, Chignell CF (1981) Free radicals in pharmacology and toxicology-selected topics. Pharmacol Rev 33(4):189–211

    CAS  PubMed  Google Scholar 

  52. Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257

    Article  CAS  PubMed  Google Scholar 

  53. DiGuiseppi J, Fridovich I (1984) The toxicology of molecular oxygen. Crit Rev Toxicol 12(4):315–342

    Article  CAS  PubMed  Google Scholar 

  54. Tappel AL (1970) Biological antioxidant protection against lipid peroxidation damage. Am J Clin Nutr 23(8):1137–1139

    Article  CAS  PubMed  Google Scholar 

  55. Logani MK, Davies RE (1980) Lipid oxidation: biologic effects and antioxidants-a review. Lipids 15(6):485–495

    Article  CAS  PubMed  Google Scholar 

  56. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10(7):709–720

    Article  CAS  PubMed  Google Scholar 

  57. Poot M (1991) Oxidants and antioxidants in proliferative senescence. Mutat Res 256(2–6):177–189

    Article  CAS  PubMed  Google Scholar 

  58. Gerster H (1991) Review: antioxidant protection of the ageing macula. Age Ageing 20(1):60–69

    Article  CAS  PubMed  Google Scholar 

  59. Diplock AT (1990) The role of antioxidants in clinical practice. Br J Clin Pract 44(7):257–258

    CAS  PubMed  Google Scholar 

  60. Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol Int Rep 2(2):113–128

    Article  CAS  PubMed  Google Scholar 

  61. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  62. Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50(3):319–375

    Article  CAS  PubMed  Google Scholar 

  63. Sies H (1974) Biochemistry of the peroxisome in the liver cell. Angew Chem Int Ed Engl 13(11):706–718

    Article  CAS  PubMed  Google Scholar 

  64. Smirnoff N (2001) L-ascorbic acid biosynthesis. Vitam Horm 61:241–266

    Article  CAS  PubMed  Google Scholar 

  65. Linster CL, Van Schaftingen E (2007) Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274(1):1–22

    Article  CAS  PubMed  Google Scholar 

  66. Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269(13):9397–9400

    CAS  PubMed  Google Scholar 

  67. Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406

    Article  CAS  PubMed  Google Scholar 

  68. Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24(2):472–478

    Article  CAS  PubMed  Google Scholar 

  69. Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265(26):15361–15364

    CAS  PubMed  Google Scholar 

  70. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am College Nut 22:18–35

    Article  CAS  Google Scholar 

  71. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  PubMed  Google Scholar 

  72. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331

    Article  CAS  PubMed  Google Scholar 

  73. Loomba L, Scarabelli T (2013) Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv 4(9):1179–1196

    Article  CAS  PubMed  Google Scholar 

  74. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815

    Article  CAS  PubMed  Google Scholar 

  75. Karimi Z, Karimi L, Shokrollahi H (2013) Nano-magnetic particles used in biomedicine: core and coating materials. Mater Sci Eng C Mater Biol Appl 33(5):2465–2475

    Article  CAS  PubMed  Google Scholar 

  76. Li Y-X, Yu S-H, Wu Q-L, Tang M, Pu Y-P, Wang D-Y (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219-220:221–230

    Article  PubMed  CAS  Google Scholar 

  77. Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    Article  PubMed  Google Scholar 

  78. Bieri JG, Evarts RP (1974) γ-tocopherol: metabolism, biological activity and significance in human vitamin E nutrition. Am J Clin Nutr 27:980–986

    Article  CAS  PubMed  Google Scholar 

  79. Green J (1972) Vitamin E and the biological antioxidant theory. Ann NY Acad Sci 203:29–44

    Article  CAS  PubMed  Google Scholar 

  80. Tappel AL (1972) Vitamin E and free radical peroxidation of lipids. Ann NY Acad Sci 203:12–28

    Article  CAS  PubMed  Google Scholar 

  81. McCay PB (1985) Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 5:323–340

    Article  CAS  PubMed  Google Scholar 

  82. Yu X-M, Guan X-M, Wu Q-L, Zhao Y-L, Wang D-Y (2015) Vitamin E ameliorates the neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res 4:1269–1281

    Article  CAS  Google Scholar 

  83. Satterlee JS, Sasakura H, Kuhara A, Berkeley M, Mori I, Sengupta P (2001) Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31(6):943–956

    Article  CAS  PubMed  Google Scholar 

  84. Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, Liu Y, Ruvkun G (1997) Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19(2):345–357

    Article  CAS  PubMed  Google Scholar 

  85. Eastman C, Horvitz HR, Jin Y (1999) Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 19(15):6225–6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB (1996) A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci USA 93(22):12593–12598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Waggoner LE, Dickinson KA, Poole DS, Tabuse Y, Miwa J, Schafer WR (2000) Long-term nicotine adaptation in Caenorhabditis elegans involves PKC-dependent changes in nicotinic receptor abundance. J Neurosci 20(23):8802–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Y-P, Li Y-X, Wu Q-L, Ye H-Y, Sun L-M, Ye B-P, Wang D-Y (2013) High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in nematode Caenorhabditis elegans. PLoS One 8(8):e71180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Dludla PV, Nkambule BB, Dias SC, Johnson R (2017) Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review. Syst Rev 6(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A (2017) A review on various uses of N-acetyl cysteine. Cell J 19(1):11–17

    PubMed  Google Scholar 

  91. Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM (2016) A minireview on N-acetylcysteine: an old drug with new approaches. Life Sci 151:359–363

    Article  CAS  PubMed  Google Scholar 

  92. Neuwelt AJ, Nguyen T, Wu YJ, Donson AM, Vibhakar R, Venkatamaran S, Amani V, Neuwelt EA, Rapkin LB, Foreman NK (2014) Preclinical high-dose acetaminophen with N-acetylcysteine rescue enhances the efficacy of cisplatin chemotherapy in atypical teratoid rhabdoid tumors. Pediatr Blood Cancer 61(1):120–127

    Article  CAS  PubMed  Google Scholar 

  93. Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5:e1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. Rev Environ Contam Toxicol 233:129–184

    CAS  PubMed  Google Scholar 

  95. Sarkar D, Shetty K (2014) Metabolic stimulation of plant phenolics for food preservation and health. Annu Rev Food Sci Technol 5:395–413

    Article  CAS  PubMed  Google Scholar 

  96. Zhao Y-L, Jia R-H, Qiao Y, Wang D-Y (2016) Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. Nanomedicine 12:735–744

    Article  CAS  PubMed  Google Scholar 

  97. Shu C-J, Yu X-M, Wu Q-L, Zhuang Z-H, Zhang W-M, Wang D-Y (2015) Pretreatment with paeonol prevents the adverse effects and alters the translocation of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. RSC Adv 5:8942–8951

    Article  CAS  Google Scholar 

  98. Amagaya S, Sugishita E, Ogihara Y, Ogawa S, Okada K, Aizawa T (1984) Comparative studies of the stereoisomers of glycyrrhetinic acid on anti-inflammatory activities. J Pharmacobiodyn 7(12):923–928

    Article  CAS  PubMed  Google Scholar 

  99. Hasegawa A, Kawaguchi Y, Nakasa H, Nakamura H, Ohmori S, Ishii I, Kitada M (2002) Effects of Kampo extracts on drug metabolism in rat liver microsomes: Rhei Rhizoma extract and Glycyrrhizae Radix extract inhibit drug oxidation. Jpn J Pharmacol 89(2):164–170

    Article  CAS  PubMed  Google Scholar 

  100. Yokozawa T, Liu ZW, Chen CP (2000) Protective effects of Glycyrrhizae radix extract and its compounds in a renal hypoxia (ischemia)-reoxygenation (reperfusion) model. Phytomedicine 6(6):439–445

    Article  CAS  PubMed  Google Scholar 

  101. Sugishita E, Amagaya S, Ogihara Y (1984) Studies on the combination of Glycyrrhizae Radix in Shakuyakukanzo-To. J Pharmacobiodyn 7(7):427–435

    Article  CAS  PubMed  Google Scholar 

  102. Wu Q-L, Zhao Y-L, Zhao G, Wang D-Y (2014) microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomedicine 10:1401–1410

    Article  CAS  PubMed  Google Scholar 

  103. Gong X, Yang Y, Huang L, Zhang Q, Wan RZ, Zhang P, Zhang B (2017) Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice. Int Immunopharmacol 46:124–132

    Article  CAS  PubMed  Google Scholar 

  104. Lin B (2011) Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev Med Chem 11(14):1222–1238

    CAS  PubMed  Google Scholar 

  105. Boor KJ, Wiedmann M, Murphy S, Alcaine S (2017) A 100-year review: microbiology and safety of milk handling. J Dairy Sci 100(12):9933–9951

    Article  CAS  PubMed  Google Scholar 

  106. Guerin J, Burgain J, Gomand F, Scher J, Gaiani C (2017) Milk fat globule membrane glycoproteins: valuable ingredients for lactic acid bacteria encapsulation? Crit Rev Food Sci Nutr 4:1–13

    Article  CAS  Google Scholar 

  107. Arqués JL, Rodríguez E, Langa S, Landete JM, Medina M (2015) Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. Biomed Res Int 2015:584183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ikeda T, Yasui C, Hoshino K, Airkawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl Environ Microbiol 73:6404–6409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lee J, Yun HS, Cho KW, Oh S, Kim SH, Chun T, Kim B, Whang KY (2011) Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity. Int J Food Microbiol 148:80–86

    Article  CAS  PubMed  Google Scholar 

  110. Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Wang, lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943

    Article  PubMed  CAS  Google Scholar 

  112. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212

    Article  CAS  PubMed  Google Scholar 

  113. Kage-Nakadai E, Kobuna H, Kimura M, Gengyo-Ando K, Inoue T, Arai H, Mitani S (2010) Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans. PLoS One 5:e8857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2018). Pharmacological Prevention of the Toxicity Induced by Environmental Nanomaterials. In: Nanotoxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-0233-6_11

Download citation

Publish with us

Policies and ethics