Skip to main content

Towards the Mechanisms of Nutrient Solubilization and Fixation in Soil System

  • Chapter
  • First Online:
Role of Rhizospheric Microbes in Soil

Abstract

Growth and development of plants depend on the nutrients present in the soil; thus it becomes necessary to provide the essential nutrients to plants. Soil is a major reservoir through which plants obtain nutrients for their growth. However, most of the nutrients in the soil occur in insoluble forms making the availability of nutrients restricted for the plants. Although chemical fertilization is a quick and efficient method, it is currently not recommended due to detrimental effects on soil and environment. On the other hand, the biological fertilization has proved to be an efficient method to supply necessary nutrients to the plants and maintain sustainability. Biofertilizers consist of a group of beneficial microorganisms that are capable of hydrolyzing essential nutrients from insoluble compounds, thus making them available for plants. A large number of microorganisms including bacteria, fungi and actinomycetes have properties which enhance the solubility of metal ions by various mechanisms such as change of soil pH or direct chelation of metal cations. The present review focuses on the mechanisms and processes associated with microbial solubilization and fixation of nutrients in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alla MH, Omar SA (2001) Survival of rhizobia/bradyrhizobia and a rock-phosphate-solubilizing fungus Aspergillus niger on various carriers from some agro-industrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutr 24:261–272

    Article  CAS  Google Scholar 

  • Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428

    PubMed  PubMed Central  CAS  Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  PubMed  CAS  Google Scholar 

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K(+ )-selective, K(+ )-sensing ion channel. FEBS Lett 486:93–98

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Alley MM, Vanlauwe B (2009) The role of fertilizers in integrated plant nutrient management. International Fertilizer Industry Association Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture Paris

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. IZA and IFA Publishers, Brussels/Paris, pp 21–22

    Google Scholar 

  • Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. Int J Pharm Pharm Sci 8(2):37–40

    CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Aseri GK, Jain N, Tarafdar JC (2009) Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am-Eurasian J Agric Environ Sci 5:564–570

    CAS  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7(30):4250–4259

    Article  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108(7):1288–1293

    CAS  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. https://doi.org/10.1007/978-81-322-2776-2_18

    Chapter  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. https://doi.org/10.1080/01490451.2016.1219431

  • Barre P, Velde B, Catel N, Abbadie L (2007) Soil-plant potassium transfer: impact of plant activity on clay minerals as seen from X-ray diffraction. Plant Soil 292:137–146

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfi sols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). Lambert Academic Publishing, Saarbrücken. ISBN:978-3659298424

    Google Scholar 

  • Beech IB, Paiva M, Caus M, Coutinho C (2001) Enzymatic activity and within biofilms of sulphate-reducing bacteria. In: Gilbert PG, Allison D, Brading M, Verran J, Walker J (eds) Biofilm community interactions: change or necessity? Boiline, Cardiff, pp 231–239

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Miner Manag 8(62A):149–150

    Article  Google Scholar 

  • Bertrand M, Sebastien B, Manuel B, Whalen J, de Oliveira T, Jean R-E (2015) Earthworm services for cropping systems. A review 2015. Agron Sustain Dev 35:553–567

    Article  CAS  Google Scholar 

  • Brian J (2007) Forms and functions of essential plant nutrients. In: Virgenia cooperative extention, pp 1–4

    Google Scholar 

  • Broadly MR, White PJ, Hammond JP, Zlko IV (2007) Zinc in plants. J New Phyt 173(4):677–702

    Article  CAS  Google Scholar 

  • Callot G, Maurette M, Pottier L, Dubois A (1987) Biogenic etching of micro-features in amorphous and crystalline silicates. Nature 328:147–149

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekar BR, Ambrose G, Jayabalan N (2005) Influence of biofertilizers and nitrogen source level on the growth and yield of Echinochloa frumentacea (Roxb.). J Agric Technol 1:223–234

    Google Scholar 

  • Chen, JH (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In: International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use 16, vol 20, pp 1–10

    Google Scholar 

  • Chen YX, Lin Q, Lu F, He YF (2000) Study on detoxication of organic acid to radish under the stress of Pb and Cd. Acta Sci Circumst 20:467–472

    CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acid and solubilization of calcium phosphate by Penicillium billai. Appl Environ Microbiol 58:1451–1458

    PubMed  PubMed Central  CAS  Google Scholar 

  • Daliparthy J, Barker AV, Mondal SS (1994) Potassium fractions with other nutrients in crops: a review focusing on the tropics. J Plant Nutr 17:1859–1886

    Article  CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. https://doi.org/10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • Demissie S, Muleta D, Berecha G (2013) Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int J Agric Res 8:123–136

    Article  CAS  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Deyn D, Raaijmakers GB, Van Ruijven CE, Berendse JF, Van Der Putten WH (2004) Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106:576–586

    Article  Google Scholar 

  • Dodor DE, Tabatabai AM (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13

    Article  CAS  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. https://doi.org/10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dornieden T, Gorbushina AA, Krumbein WE (1997) Changes in physical properties of marble by fungal growth. Int J Restor Build Monum 3:441–456

    Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. https://doi.org/10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Hoflich C (2003) Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Faivre D, Schuler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Gaind S, Nain L (2015) Soil-phosphorus mobilization potential of phytate mineralizing fungi. J Plant Nutr 38:2159–2175

    Article  CAS  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–112

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). https://doi.org/10.1155/2013/869697

  • Guimaraes LHS, Peixoto-Nogueira SC, Michelinl M, Rizzatti ACS, Sandrim VC, Zanoelo F, Aquino ACMM, Junior AB, de Lourdes M, Polizeli TM (2006) Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz J Microbiol 37:474–480

    Article  CAS  Google Scholar 

  • Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204

    CAS  Google Scholar 

  • Hafeez B, Khanif YM, Samsuri AW, Radziah O, Zakaria W, Saleem M (2013) Direct and residual effect of zinc on zinc efficient and inefficient rice genotypes grown under less zinc content submerged acidic condition. Commun Soil Sci Plant Anal 44:2233–2252

    Article  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  CAS  Google Scholar 

  • Harley AD, Gilkes RJ (2000) Factors influencing the release of plant nutrient elements from silicates rock powder: a geochemical overview. Nutr Cycl Agroecosyst 56:11–36

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He ZL, Bian W, Zhu J (2002) Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Commun Soil Sci Plant Anal 33:647–663

    Article  CAS  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Henry PC, Smith MF (2006) Two-step approach to determine some useful phosphorus characteristics of South African soils: a review of work done at the ARC-Institute for soil, climate and water. S Afr J Plant Soil 23:64–72

    Article  CAS  Google Scholar 

  • Hilda R, Fraga R (2000) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of trace elements as related to root induced chemical changes in the rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, pp 25–41

    Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  PubMed  Google Scholar 

  • Hochmuth GJ, Hanlon EA (2010) Commercial vegetable fertilization principles. Fla Coop Ext Serv Cir SL 319. http://edis.ifas.ufl.edu/pdffiles/cv/cv00900.pdf

  • Hong S, Geun P, Mi C, Moon H (2006) Solubilization of insoluble inorganic phosphate by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    Article  CAS  Google Scholar 

  • Hosseinpur AR, Motaghian HR, Salehi MH (2012) Potassium release kinetics and its correlation with pinto bean (Phaseolus vulgaris) plant indices. Plant Soil Environ 58:328–333

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth – the hard (and soft) facts. J Gen Microbiol 137(4):725–734

    Article  CAS  Google Scholar 

  • Huntington TG, Hooper RP, Johnson CE, Aulenbach BT, Cappellato R, Blum AE (2000) Calcium depletion in a south eastern United States forest ecosystem. Soil Sci Soc Am J 64:1845–1858

    Article  CAS  Google Scholar 

  • Illmer PA, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  PubMed  CAS  Google Scholar 

  • Jagessar RC, Allen R (2012) Phytochemical screening and atomic absorption spectroscopic studies of solvent type extract from leaves of Terminalia catappa, (almond). Nat Appl Sci 3(3):17–26

    Google Scholar 

  • Jain R, Saxena J, Sharma V (2010) The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil – plant system. Appl Soil Ecol 46:90–94

    Article  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. https://doi.org/10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Jha A, Saxena J, Sharma V (2013) An investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt and pH. Commun Soil Sci Plant Anal 44(16):2443–2458

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kadiri DD, Gorle N, Peetala KVR, Peela S (2013) Isolation, screening and identification of phosphate solubilising bacteria from different regions of Visakhapatnam and Araku Valley. Int J Adv Biotechnol Res 4(4):518–526

    Google Scholar 

  • Kalinowski BE, Liermann LJ, Brantley SL, Barnes A, Pantano CG (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta 64:1331–1343

    Article  CAS  Google Scholar 

  • Kalra VP, Sharma PK (2015) Agro-climatic indices of fodder maize Zea mays L in relation to nutritional status. Int J Farm Sci 5(2):7–14

    Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture–a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265

    Chapter  Google Scholar 

  • Khiari L, Parent LE (2005) Phosphorus transformations in acid light-textured soils treated with dry swine manure. Can J Soil Sci 85:75–87

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26(2):79–87

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kraffczyk I, Tolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kumar SRS, Rao KVB (2012) Biological nitrogen fixation: a review. Int V Adv Life Sci 1:1–6

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. https://doi.org/10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. https://doi.org/10.1007/s00344-016-9663-5

  • Kumari KS, Devi SNP, Vasandha S (2016) Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Curr Sci 110(2):196–205

    Article  CAS  Google Scholar 

  • Kurek E (2002) Microbial mobilization of metals from soil minerals under aerobic conditions. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, Chichester, pp 189–225

    Google Scholar 

  • Lhuissier FGP, De Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AM (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium nod factors: state of the art. Ann Bot (Lond) 87:289–302

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72(1):87–98

    Article  CAS  Google Scholar 

  • Lindemann WC, Glover CR (2008) Nitrogen fixation by legumes. Electron Distrib 5:1–4

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus spp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Liu DF, Lian B, Wang B (2016) Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm’s gut. Acta Geochim 35(3):262–270

    Article  CAS  Google Scholar 

  • Luo H, Chang R, Wang S, Xu J, Zhou X, Zhang J (2011) Screening of highly effective potassium bacteria in rhizosphere soil of high-end brand tobacco in Yunnan. Southwest China J Agric Sci 24:1816–1817

    Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  • Mahato P, Badoni A, Chauhan JS (2009) Effect of Azotobacter and nitrogen on seed germination and early seedling growth in tomato. Demogr Res 1(4):62–66

    Google Scholar 

  • Mahdi SS, Dar SA, Ahmad S, Hassan GI (2010) Zinc availability-a major issue in agriculture. Res J Agric Sci 3(3):78–79

    Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Manning DAC (2010) Mineral sources of potassium for plant nutrition. Rev Agron Sustain Dev 30:281–294

    Article  CAS  Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Marra LM, Soares CRFSS, de Oliveira SM, Ferreira PAAA, Soares BL, Carvalho RF, Lima JM, Moreira FM (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    Article  CAS  Google Scholar 

  • Martinez CE, Motto HL (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107:153–158

    Article  PubMed  CAS  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth department of soil and crop sciences. http://jimmcafee.tamu.edu/files/potassium

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  PubMed  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. https://doi.org/10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. https://doi.org/10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. https://doi.org/10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikkelsen R, Hartz TK (2008) Nitrogen sources for organic crop production. Better Crops 92:16–19

    Google Scholar 

  • Minaxi, Saxena J (2010) Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semi arid region of Rajasthan. BioControl 55(6):799–810

    Article  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strain (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. Cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Molla MAZ, Chowdhury AA, Islam A, Hoque S (1984) Microbial mineralization of organic phosphate in soil. Plant Soil 78:393–399

    Article  CAS  Google Scholar 

  • Moreau R (1959) The biological liberation of soluble phosphates from insoluble phosphorus compounds in soil. Compt Rend Akad Sci Paris 249:1804–1806

    Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 210–215

    Chapter  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Neaman A, Chorover J, Brantley SL (2005) Implication of the evolution of organic acid moieties for basalt weathering over ecological time. Am J Sci 305:147–185

    Article  CAS  Google Scholar 

  • Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III). Eur J Soil Sci 53:45–55

    Article  CAS  Google Scholar 

  • Nyamangara J, Makarimayi E, Masvaya EN, Zingore S, Delve RJ (2011) Effect of soil fertility management strategies and resource-endowment on spatial soil fertility gradients, plant nutrient uptake and maize growth at two smallholder areas, North-Western Zimbabwe. S Afr J Plant Soil 28(1):1–10

    Article  CAS  Google Scholar 

  • Oborn A-RY, Askegaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural production systems. Soil Use Manag 21:102–112

    Article  Google Scholar 

  • Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101:4120–4124

    Article  PubMed  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Oteino N, Culhane J, Germaine KJ, Ryan D, Brazil D, Dowling DN (2013) Screening of large collections of plant associated bacteria for effective plant growth promotion and colonisation, in Association of Applied Biologists (AAB) Conference 2013-Positive Plant Microbial Interactions: their Role in Maintaining Sustainable Agricultural and Natural Ecosystems (North Linconshire), pp 13–18

    Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Park J, Sanford RA, Bethke CM (2009) Microbial activity and chemical weathering in the Middendorf aquifer, South Carolina. Chem Geol 258:232–241

    Article  CAS  Google Scholar 

  • Parmar KB, Mehta BP, Kunt MD (2016) Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize (Zea mays). Int J Sci Env Technol 5(5):3030–3037

    Google Scholar 

  • Perveen S, Khan MS, Zaidi A (2002) Effect of rhizospheric microorganisms on growth and yield of green gram (Phaseolus radiatus). Ind J Agric Sci 72:421–423

    Google Scholar 

  • Pradhan N, Shukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. https://doi.org/10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. https://doi.org/10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Raj SA (2007) Bio-fertilizers for micronutrients. Biofertilizer Newsletter (July) pp 8–10

    Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of association of microbiologists of India, p 124

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2015) Effect of Aspergillus niger K7 Inoculation and Biochar Amendment on the Growth and Yield of Brassica nigra Palnts. In: Proceeding of the 1st national conference on recent advances in sciences & technology, (NCRAST-2015), vol 1. pp 73–81

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Read JJ, Reddy KR, Johnie N, Jenkins JN (2006) Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron 24(3):282–290

    Article  CAS  Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. Regents of the University of Minnesota. http://www.extension.umn.edu/distribution/cropsystems/dc6794.html

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186

    Article  CAS  Google Scholar 

  • Rengel Z, Damon PM (2008) Crop and genotype differ in efficiency of potassium uptake and use. Physiol Plant 133(4):624–636

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–12

    Article  CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annl Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55(5):207–212

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. https://doi.org/10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potas-sium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21(2):118–124

    Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization of different zinc solubilizing bacterial (ZBS) isolates. Braz J Microbiol 34:121–125

    Article  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2007) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140

    Article  PubMed  CAS  Google Scholar 

  • Saxena J, Basu P, Jaligam V, Chandra S (2013a) Phosphate solubilization by a few fungal strains belonging to Aspergilli and Penicillia. Afr J Microbiol Res 7(41):4862–4869

    Article  CAS  Google Scholar 

  • Saxena J, Rana G, Pandey M (2013b) Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Sci Hortic 162:351–356

    Article  CAS  Google Scholar 

  • Saxena J, Rawat J, Sanwal P (2016) Enhancement of growth and yield of Glycine Max plants with inoculation of phosphate solubilizing fungus Aspergillus Niger K7 and biochar amendment in soil. Commun Soil Sci Plant Anal 47:2334–2347. https://doi.org/10.1080/00103624.2016.1243708

    Article  CAS  Google Scholar 

  • Schadeck RJG, Leite B, Buchi DF (1998) Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum graminicola. Cell Struct Funct 23:333–340

    Article  PubMed  CAS  Google Scholar 

  • Schaetzl RJ, Anderson S (2005) Soils: genesis and geomorphology. Cambridge University Press, Cambridge, MA, pp 741–790

    Book  Google Scholar 

  • Schneider A, Tesileanu R, Charles R, Sinaj S (2013) Kinetics of soil potassium sorption-desorption and fixation. Commun Soil Sci Plant Anal 44:837–849

    Article  CAS  Google Scholar 

  • Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Procedia 9:108–117

    Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. https://doi.org/10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006) Growth responses of Helianthus annus to plant growth promoting rhizobacteria used as a biofertilizer. J Agric Res 1(6):573–581

    Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Zhan C, Ignatov A, Manjasetty BA, Marinkovic N, Sullivan M, Huang R, Chance MR (2005) Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. Structure 13:1473–1486

    Article  PubMed  CAS  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3(1):46–52

    Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. https://doi.org/10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Shukla AK, Tiwari PK, Prakash C (2014) Micronutrients deficiencies vis-a-vis food and nutritional security of India. Ind J Fert 10(12):94–112

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

    Article  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. https://doi.org/10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh B, Ryan J (2015) Managing fertilizers to enhance soil health, 1st edn. International Fertilizer Industry Association (IFA), Paris

    Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    Article  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. https://doi.org/10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Sinha SK (2014) Trace elements deficiency & cancer. IOSR J Pharm Biol Sci (IOSR-JPBS) 9(4-II):21–32

    Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Baraz J Microbiol 39:151–156

    Article  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting Mediterranean marbles and limestones. Geomicrobiol J 14(3):219–230

    Article  Google Scholar 

  • Stevenson FJ (2005) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Stoklasa J, Ernest A (1908) Beitrage zur Losung der Frage der chemischen Natur des Wurzelsekretes. Jahrb Wiss Bot 46:55–102

    CAS  Google Scholar 

  • Subbarao NS (1988) Phosphate solubilizing micro-organism. In: Biofertilizer in agriculture and forestry. Regional Biofertilizer Development Centre, Hissar, pp 133–142

    Google Scholar 

  • Sutjaritvorakul T, Gadd GM, Suntornvongsagul K, Whalley AJS, Roengsumran S, Sihanonth P (2013) Solubilization and transformation of insoluble zinc compounds by Fungi isolated from a zinc mine. Environ Asia 6(2):42–46

    Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Rao AV, Bala K (1988) Production of phosphatases by fungi isolated from desert soils. Folia Microbiol 33:453–457

    Article  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiya CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • To-O K, Kamasaka H, Kuriki T, Okada S (2000) Substrate selectivity in Aspergillus niger KU-8 acid phosphatase II using phosphoryl oligosaccharides. Biosci Biotechnol Biochem 64:1534–1537

    Article  PubMed  CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  PubMed  CAS  Google Scholar 

  • Truog E (1912) Factors influencing the availability of rock phosphate. Wisconsin Agr Exp Sta Res Bull 20:17–51

    Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910

    Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Viviene NM, Felix DD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    Article  Google Scholar 

  • Wang ZW, Chen ZS, Duan N, Shan ZX (2007) Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. J Environ Sci 19(2):176–180

    Article  CAS  Google Scholar 

  • Wang HY, Shen QH, Zhou J, Wang J, Du CW, Chen XQ (2011) Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant Soil 343(1):209–220

    Article  CAS  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7:1073–1080

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. J South Afr Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. https://doi.org/10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yadav RS, Tarafdar JC (2001) Influence of organic and inorganic phosphorous supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils 34(3):140–143

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Article  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exo-polysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Yuan L, Fang DH, Wang ZH, Shun H, Huang JG (2000) Bio-mobilization of potassium from clay minerals: I. By ectomycorrhizas. Pedosphere 10:339–346

    Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. https://doi.org/10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raphanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang QC, Wang GH, Feng YK, Qian P, Schoe-nau JJ (2011) Effect of potassium fertilization on soil potassium pools and rice response in an intensive cropping system in China. J Plant Nutr Soil Sci 174:73–80

    Article  CAS  Google Scholar 

  • Zimdahl RL (2015) Lime: a soil amendment. In: Zimdahl RL (ed) Six chemicals that changed agriculture. Academic Press/Elsevier, London, pp 41–54

    Chapter  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the funding from Uttarakhand Council for Biotechnology, Uttarakhand.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, J., Sanwal, P., Saxena, J. (2018). Towards the Mechanisms of Nutrient Solubilization and Fixation in Soil System. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_8

Download citation

Publish with us

Policies and ethics