Skip to main content

Seed Priming on Germination, Growth and Flowering in Flowers and Ornamental Trees

  • Chapter
  • First Online:
Advances in Seed Priming

Abstract

Seed dormancy is an emerging problem related to germination which is common in many species of ornamental trees and flowers. Poor seed germination and subsequently poor field establishment are a common phenomenon at adverse conditions of environment. The most important problems faced are the heterogneity and lack of suitable conditions in soil that causes decrease in germination percent. Priming is a water-based technique that consents metabolic processes necessary for enhancing germination rate and seed quality by managing the temperature and seed moisture content in which the seed is taken through the first biochemical processes within the initial stages of germination but preventing the seed transition towards full germination. This is a successful way through which plants would be able to complete their growth on or before the stresses arrive (Subedi KD, Ma BL. Agron J 97(1):211–218, 2005). Seed priming technique has been practised in many countries including India, Pakistan, China and Australia, and more than thousand trials had been conducted to evaluate the performance of priming in a variety of crops. The principle of seed priming is to minimise the period of emergence and to protect seed from environmental stresses during critical phase of seedling establishment to synchronise emergence which lead to uniform establishment and improved yield. It reduces the effect of salinity on the morphological parameter of the plants. Various priming techniques, like osmopriming, biopriming, halopriming, thermopriming, hydropriming, hormonal priming and solid matrix priming, give favourable result in seeds of ornamental flowers as well as trees. This technique has been successfully carried out in flower crops like balsam, coneflower, cosmos, gladiolus, pansy, marigold, periwinkle, rudbeckia, salvia, snapdragon and zinnia and trees like cassia, cypress, senegal, eucalyptus, fig, teak, pine, almond, tamarind, oak, karanj, khejri, siris, subabul, kapok, gulmohar, kachnar, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Aslam N, Mahmood F, Hameed A, Irfan S, Ahmad G (2004) Enhancement of germination and emergence of canola seeds by different priming techniques. Caderno Pesquisasérie Biol 16(1):19–34

    Google Scholar 

  • Afzal I, Basra SM, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8(1):23–28

    CAS  Google Scholar 

  • Alderete-Chavez A, Cruz-Landero NDL, Guerra-Santos JJ, Guevara E, Gelabert R (2011) Promotion of germination of Bauhinia divaricata L. seeds by effects of chemical scarification. Res J Seed Sci 4:51–57

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment-A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Google Scholar 

  • Asomaning JM, Sacandle M, Olympus NS (2011) Germination response of Terminalia superba Enl. And diels seed on the 2-way grant’s thermogradient plate. Res J Seed Sci 4:28–39

    Article  Google Scholar 

  • Atici O, Agar G, Battal P (2003) Interaction between endogenous plant hormones and alphamylase in germinating chickpeas seeds under cadmium exposure. Fresenius Environ Bull 12:781–785

    CAS  Google Scholar 

  • Ballard LA (1973) Physical barriers to germination. Seed Sci Technol 1: 285–295.

    Google Scholar 

  • Baskin JM, Baskin CC (1974) Breaking dormancy in seeds of Isanthus branchiathus (Labiatae) with gibberellic acid. Phyton 32:159–165

    CAS  Google Scholar 

  • Baskin JM, Baskin CC (1998) Ecology, biogeography and evolution of dormancy and germination. Academic, San Diego, p 666

    Google Scholar 

  • Bastia DK, Rout AK, Mohanty SK, Prusty AM (1999) Effect of sowing date sowing methods and seed soaking on yield and oil content of rainfed safflower grown in Kalahandi. Orissa Indian J Agron 44:621–623

    Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425–431

    Article  PubMed  Google Scholar 

  • Bewley JD, Black M (1978) Mobilization of reserves. In: Physiology and Biochemistry of seeds in relation to germination. Springer, Berlin/Heidelberg, pp 177–244

    Chapter  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Bhargava B, Gupta YC, Dhiman SR, Sharma P (2015) Effect of seed priming on germination, growth and flowering of snapdragon (Antirrhinum majus L.). Natl Acad Sci Lett 38(1):81–85

    Article  CAS  Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Chalupa V (1995) Somatic embryogenesis in oak (Quercus spp.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 2. KulwerAcademic Publishers, Dordrecht, pp 67–87

    Chapter  Google Scholar 

  • Chen SY, Kuo SR, Chien CT (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol 28(9):1431–1439

    Article  PubMed  Google Scholar 

  • Close DC, Beadle CL, Brown PH, Holz GK (2000) Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) Maiden and Eucalyptus globulus Labill. Trees-Struct Funct 15(1):32–41

    Article  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Dastanpoor N, Fahimi H, Shariati M, Davazdahemami S, Hashemi SMM (2013) Effects of hydropriming on seed germination and seedling growth in sage (Salvia officinalis L.). Afr J Biotechnol 12(11):1223–1228

    Google Scholar 

  • De Chandra G (1999) Fundamentals of agronomy. Oxford and IBH Publishing Company, New-Delhi

    Google Scholar 

  • De la Barrera E, Nobel PS (2003) Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis. J Arid Environ 53(3):297–306

    Article  Google Scholar 

  • Di Girolamo G, Barbanti L (2012) Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital J Agron 7(2):25

    Article  Google Scholar 

  • Dimock AW, Osborn JH (1943) An Alternaria disease of zinnia. Phytopathology 33:372–381

    Google Scholar 

  • Dodd MC, Staden JV, Smith MT (1989) Seed germination in Podocarpus henkelii: an ultrastructural and biochemical study. Ann Bot 64(5):569–579

    Article  CAS  Google Scholar 

  • Dorna H, Li W, Szopinska D (2014) The effect of priming on germination and vigour of pansy (Viola× Wittrockiana Gams.) seeds. Acta Sci Pol Hortoru 13(6):15–29

    Google Scholar 

  • Edwards DGW (1981) A new prechilling method for true fir seeds. Proceeding: Combined Meetg. Intermountain Nurseryman’s Assoc. and Western For. Nurs. Assoc., Idaho. USDA 109:58–66

    Google Scholar 

  • Edwards DGW (1996) The stratification-re-dry technique with special reference to true fir seeds. In: Landis TD, D.B. South, Technical Coordinators (eds) National proceedings, forest conservation nursery associations, General Technical Report PNW-GTR-389. U.S.D.A. Forest Service, Pacific Northwest Research Station, Portland, pp 172–182

    Google Scholar 

  • Egley GH (1989) Water-impermeable seed coverings as barriers to germination. In: Recent advances in the development and germination of seeds. Springer, Boston, pp 207–223

    Chapter  Google Scholar 

  • Etejere EO, Fawole MO, Sani A (1982) Studies on the seed germination of Parkia clappertoniana. Turrialba 32(2):181–185

    Google Scholar 

  • Eze JMO, Orole BC (1987) Germination of the seeds of Prosopis africana. Niger J For 17:12–16

    Google Scholar 

  • Falemara BC, Nwadike C, Obashola EO (2013) Germination response of baobab seeds (Adansonia digitata L.) as influenced by three pretreatment techniques. In: Forest industry in a dynamic global environment. Proceeding: 35th annual conference of Forestry Association of Nigeria, Sokoto, Sokoto state, pp 44–55

    Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006a) Seed invigoration by osmohardening in coarse and fi ne rice (Oryza sativa L.). Seed Sci Technol 34:181–187

    Article  Google Scholar 

  • Farooq M, Basra SMA, Wahid A (2006b) Priming of field sown rice seed germination, seedling establishment, allometry and yield. Plant Growth Regul 49:285–294

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Khan MB (2007a) Seed priming improves growth of nursery seedlings and yield of transplanted rice. Arch Agron Soil Sci 53:1–12

    Article  Google Scholar 

  • Farooq M, Basra SMA, Wahid A (2007b) Improving the performance of transplanted rice by seed priming. Plant Growth Regul 51:129–137

    Article  CAS  Google Scholar 

  • Fay AM, Bennett MA, Still SM (1994) Osmotic seed priming of Rudbeckia fulgida improves germination and expands germination range. Hortscience 29(8):868–870

    Google Scholar 

  • Felippe GM (1980) Germination of the light-sensitive seeds of and : effects of temperature. New Phytol 84(3):439–448

    Google Scholar 

  • Fletcher RA, Gilley A (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    CAS  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Gallis AT, Doulis AG, Papageorgiou AC (2007) Variability of cortex terpene composition in Cupressus sempervirens L. provenances grown in Crete, Greece. Silvae Genet 56(6):294–299

    Article  Google Scholar 

  • Garner JM, Armitage AM (2008) Cooling and long-day lighting influences growth and flowering of Phlox paniculata L. ‘Ice Cap’ used for cut flowers. Hortscience 43(3):707–709

    Google Scholar 

  • Gill LS, Bamidele JF (1981) Seed morphology, germination and cytology of three savanna trees of Nigeria. Niger J For 2:16–23

    Google Scholar 

  • Gonzalez-Zertuche L, Vazquez-Yanes C, Gamboa A, Sanchez-Coronado ME, Aguilera P, Orozco-Segovia A (2001) Natural priming of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Sci Res 11(1):27–34

    Article  CAS  Google Scholar 

  • Gratao Pl, Polle A, Lea PJ, Azevedo R (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Gribel R, Gibbs PE, Queiróz AL (1999) Flowering phenology and pollination biology of Ceiba pentandra (Bombacaceae) in Central Amazonia. J Trop Ecol 15(3):247–263

    Article  Google Scholar 

  • Harris D, Pathan AK, Gothkar P, Joshi A, Chivasa W, Nyamudeza P (2001) On-farm seed priming: using participatory methods to revive and refine a key technology. Agric Syst 69(1):151–164

    Article  Google Scholar 

  • Hasegawa S (2016) What is seed priming?, Germains Seed Technology. https://germains.com/what-is-seed-priming

  • Heydecker W, Wainwright H (1976) More rapid and uniform germination of Cyclamen persicum L. Sci Hortic 5(2):183–189

    Article  Google Scholar 

  • Heydecker W, Coolbear P (1977) Seed treatments for improved performance survey and attempted prognosis. Seed Sci Technol 5:353–425

    Google Scholar 

  • Hossain MA, Arefin MK, Khan BM, Rahman MA (2005) Effects of seed treatments on germination and seedling growth attributes of Horitaki (Terminalia chebula Retz.) in the nursery. Res J Agric Biol Sci 1(2):135–141

    Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Zhang Y, Li J, Bi Y (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  PubMed  CAS  Google Scholar 

  • Huang YM, Wang HH, Chen KH (2002) Application of seed priming treatments in spinach (Spinacia oleracea L.) production. J Chin Soc Hort Sci 48:117–123

    Google Scholar 

  • Janson CH, Terborgh J, Emmons LH (1981) Non-Flying Mammals as Pollinating Agents in the Amazonian Forest. Biotropica 13(2):1

    Article  Google Scholar 

  • Jie LIU, Gong she L, Dong mei Q, Fang fang L, Enhua W (2002) Effect of PEG on germination and active oxygen metabolism in wildrye (Leymuschinensis) seeds. Acta Prataculturae Sin 11(1):59–64

    Google Scholar 

  • Jisha K, Vijayakumari K, Puthur J (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Karimi M, Varyani M (2016) Role of priming technique in germination parameters of calendula (Calendula officinalis L.) seeds. J Agric Sci 61(3):215–226

    Google Scholar 

  • Karthikeyan B, Jaleel CA, Gopi R, Deiveekasundaram M (2007) Science letters: alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs. J Zhejiang Sci 8(7):453

    Article  CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA (1983) Sources, sinks and seasonal cycles of atmospheric methane. J Geophys Res Oceans 88(9):5131–5144

    Article  CAS  Google Scholar 

  • Khan AA, Samimy EC (1982) Hormones in relation to primary and secondary seed dormancy. In: Khan AA (ed) Physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam, pp 203–241

    Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28(1):81–87

    CAS  Google Scholar 

  • Kolotelo D (1998) Abies seeds problems. Proceedings: 1995, 1996, 1997 Forest Nursery Association of British Columbia Meetings, B.C. Ministry of Forests, Surrey, B.C., Canada., pp 122–130

    Google Scholar 

  • Kucey RMN (1988) Alteration of size of wheat root systems and nitrogen fixing bacteria measured under field conditions. Can J Microbiol 34:735–739

    Article  CAS  Google Scholar 

  • Lacicowa B, Kiecana I, Pięta D (1991) Mikroflora materiału siewnego roślin ozdobnych. I. Mikroflora materiału siewnego cynii (Zinnia elegans L.)i groszku pachnącego (Lathyrus odoratus L.). Inst Sadown Kwiac Ser B 16:109–116

    Google Scholar 

  • Leadem CL (1986) Stratification of Abies amabilis seeds. Can J For Res 16:755–760

    Article  Google Scholar 

  • Liu Y, Hilhorst HW, Groot SP, Bino RJ (1997) Amounts of nuclear DNA and internal morphology of gibberellin-and abscisic acid-deficient tomato (Lycopersicon esculentum Mill.) seeds during maturation, imbibition and germination. Ann Bot 79(2):161–168

    Article  CAS  Google Scholar 

  • Liu Y, Kermode A, El-Kashaby YO (2013) The role of moist-chilling and thermo-priming on the germination characteristics of white spruce (Picea glauca) seed. Seed Sci Tech 41:1–15

    Article  Google Scholar 

  • Ma Y, Feurtado JA, Kermode AR (2003) Effect of solid matrix priming during moist chilling on dormancy breakage and germination of seeds of four fir species. New For 25(1):67–81

    Article  Google Scholar 

  • Mahmood AM, Possuswam PK (1980) Propagation of Casuarina junghuhniana by planting shoots and root suckers. Indian For 106(4):298–299

    Google Scholar 

  • Manonmani V, Begum MAJ, Jayanthi M (2014) Halo priming of seeds. Res J Seed Sci 7(1):1–13

    Article  Google Scholar 

  • Markovskaya EF, Sysoeva MI, Sherudilo EG, Topchieva LV (2007) Differential gene expression in cucumber plants in response to brief daily cold treatments. Russ J Plant Physiol 54(5):607–611

    Article  CAS  Google Scholar 

  • Masood A, Iqbal N, Khan N (2012) Role of ethylene in alleviation of cadmium-induced capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Poljakoff-Mayber A (1963) The germination of seeds. Pergamon Press, London, pp 31–94

    Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27(1):177–237

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mushtaq S, Hafiz IA, Hasan SZU, Arif M, Shehzad MA, Rafique R, Iqbal MS (2012) Evaluation of seed priming on germination of Gladiolus alatus. Afr J Biotechnol 11(52):11520–11523

    CAS  Google Scholar 

  • Mwale SS, Hamusimbi C, Mwansa K (2003) Germination, emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Sci Technol 31(1):199–206

    Article  Google Scholar 

  • Nabanyumya R, Obua J, Tumwebaze SB (2015) Germination of Afrocarpus usambarensis and Podocarpus milanjianus seeds in Sango Bay, Uganda. Uganda J Agric Sci 16(2):231–244

    Google Scholar 

  • Nancy W, Don ME, James B, Charles S (1997) Biological seed treatments: factors involved in efficacy. Hortic Sci 32:179–183

    Google Scholar 

  • Nascimento WM, Cantliffe DJ, Huber DJ (2004) Ethylene evolution and endo-beta-mannanase activity during lettuceseed germination at high temperature. Sci Agric 61(2):156–163

    Article  CAS  Google Scholar 

  • Nascimento AR, Mouchrek Filho JE, Mouchrek Filho VE, Martins AG, Marinho SC, Serra CLM, Alves LMC (2005) Avaliação da sensibilidade de antimicrobianos a cepas de enterobacteriaceae isoladas de amostras de alface (Lactuca sativa) comercializada na cidade de São Luís-MA. Bol Cent Pesq Processamento Aliment 23(2):265–272

    CAS  Google Scholar 

  • Nleya T, Ball RA, Vandenberg A (2005) Germination of common bean under constant and alternating cool temperatures. Can J Plant Sci 85(3):577–585

    Article  Google Scholar 

  • Okoro, S.P.A., Awodola, A.M. and Itolo, G.O. (1986) The impact of selected tree species on the soil properties in a Sudan Savanna Forest. In: Proceedings of 16th Annual Conference of Forestry Association of Nigeria, pp 660–667

    Google Scholar 

  • Onochie CFA (1990) The dying dorest, declining forest resources of Nigeria. In: Keynote address 4th annual conferences of the Botanical Society of Nigeria. University of Nigeria, Nsukka

    Google Scholar 

  • Osburn RM, Schroth MN (1989) Effect of osmopriming sugar beet seed on germination rate and incidence of Pythium ultimum damping-off. Plant Dis 73(1):21–24

    Article  Google Scholar 

  • Owonubi JJ, Otegbeye GO (2004) Disappearing forests: a review of the challenges for conservation of genetic resources and environmental management. J Res Manag 1:1–11

    Google Scholar 

  • Ozturk M, Gemici M, Ozdemir F, Keyikci N (1994) Tohumçimlenmesiolayındabitkiselhor monlarınveçimlenmestimülatörününtuzstresiniazaltmadakirolü. UlusalBiyolojiKongresi, Edirne, pp 44–48

    Google Scholar 

  • Palacios MG, Smits GB, Noguera R (1991) Presencia e influencia de algunos hongos patogenos en cultivos de Zinnia elegans Jacq. en la region central de Venezuela. Agron Trop 41(5-6):237–244

    Google Scholar 

  • Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Papavizas GC (1973) Status of applied biological control of soil-borne plant pathogens. Soil Biol Biochem 5(6):709–720

    Article  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Pre-sowing seed priming. Hort Rev 16:109–141

    Google Scholar 

  • Phartyal SS, Baskin JM, Baskin CC, Thapliyal RC (2005) Physical dormancy in seeds of Dodonaea viscosa from India. Seed Sci Res 15:59–61

    Article  Google Scholar 

  • Pill WG (1995) Low water potential and presowing germination treatments to improve seed quality. In: Seed quality: basic mechanisms and agricultural implications. The Haworth Press, Binghamton, pp 319–359

    Google Scholar 

  • Pill WG, Gunter JA (2001) Emergence and shoot growth of cosmos and marigold from paclobutrazol-treated seed. J Environ Hortic 19(1):11–14

    Google Scholar 

  • Pill WG, Crossan CK, Frett JJ, Smith WG (1994) Matric and osmotic priming of Echinacea purpurea (L.) Moench seeds. Sci Hortic 59(1):37–44

    Article  Google Scholar 

  • Pinyopusarerk K, Boland DJ (1990) Casuarina junghuhniana: a highly adaptable tropical casuarina. NFT Highlights 90(4):1–2

    Google Scholar 

  • Rafiq S, Iqbal T, Hameed A, Ali RZ, Rafiq N (2006) Morphobiochemical analysis of salinity stress response of wheat. Pak J Bot 38(5):1759–1767

    Google Scholar 

  • Rao MSL, Kulkarni S, Lingaraju S, Nadaf HL (2009) Biopriming of seeds: potential tool in the integrated management of alternaria blight of sunflower. Helia 32(50):107–114

    Article  Google Scholar 

  • Rawat JMS, Tomar YK, Rawat V (2010) Effect of stratification on seed germination and seedling performance of wild pomegranate. J Am Sci 6(5):97–99

    Google Scholar 

  • Revathi R, Mohan V, Jha MN (2013) Integrated nutrient management on the growth enhancement of Dalbergia sissoo Roxb. seedlings. J Acad Ind Res 1(9):550–557

    Google Scholar 

  • Richardson MJ (1990) An annotated list of seed-borne diseases. International Seed Testing Association, ZĦrich

    Google Scholar 

  • Rowse HR (1991) Methods of priming seeds. UK, Patent No. 2192781

    Google Scholar 

  • Runkle ES, Heins RD, Cameron AC, Carlson WH (1999) Photoperiod and cold treatment regulate flowering of Rudbeckia fulgida Goldsturm. Hortscience 34(1):55–58

    Google Scholar 

  • Schmidt L (2000) Guide to handling of tropical and subtropical forest seed. Danida Forest Seed Centre, Denmark, p 511

    Google Scholar 

  • Sedghi M, Nemati A, Esmaielpour B (2010) Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates J Food Agric 22(2):130

    Article  Google Scholar 

  • Shakarami B, Dianati TG, Tabari M, Behtari B (2011) The effect of priming treatments on salinity tolerance of Festuca arundinacea Schreb and Festuca ovina L. seeds during germination and early growth. Iran J Rangelands For Plant Breed Genet Res 18(2):318–328

    Google Scholar 

  • Shin JS, Raymer P, Kim W (2006) Environmental factors influencing germination in seeded seashore paspalum. Hortscience 41(5):1330–1331

    Google Scholar 

  • Singh AK, Karki K (2003) Effect of grading and GA3 on germination and seedling growth attributes in balsam. Progress Hortic 35(2):158–160

    Google Scholar 

  • Sivaramakrishnan S, Patel VZ, Soman P (1990) Heat shock proteins of sorghum (Sorghum bicolor (L.) Moench) and pearl millet (Pennisetum glaucum (L.) R. Br.) cultivars with differing heat tolerance at seedling establishment stage. J Exp Bot 41:249–254

    Article  CAS  Google Scholar 

  • Sivritepe HO (2000) The effects of osmotic conditioning treatments on salt tolerance of onion seeds. In: 3rd National symposium on vegetable production, Isparta, Turkey. pp 475–481

    Google Scholar 

  • Sivritepe HO, Dourado AM (1995) The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds. Ann Bot 75(2):165–171

    Article  Google Scholar 

  • Ssenku JE, Ntale M, Backeus I, Oryem-Origa H (2017) Phytoremediation potential of Leucaena leucocephala for heavy metal-polluted and heavy metal-degraded environments. In: Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 189–209

    Chapter  Google Scholar 

  • Subedi KD, Ma BL (2005) Seed priming does not improve corn yield in a humid temperate environment. Agron J 97(1):211–218

    Google Scholar 

  • Suleman MK, Bhatt NR, Jacob S, Thomas RR (2011) Germination studies in Ochradenus baccatus Delile, Peganum harmala L. and Gynandriris sisyrinchium Parl. Res J Seed Sci 4:58–63

    Article  Google Scholar 

  • Suma N, Srimathi P, Roopa VM (2014) Influence of biofertilizer pelleting on seed and seedling quality characteristics of Sesamum indicum. Int J Curr Microbiol App Sci 3(6):591–594

    CAS  Google Scholar 

  • Szopinska D, Tylkowska K (2003) Effect of osmopriming on location of seed-borne fungi in lettuce (Lactuca sativa) seeds. Phytopathol Pol 29:69–80

    Google Scholar 

  • Tanaka Y, Edwards DGW (1986) An improved and more versatile method for prechilling Abies procera Rehd. seeds. Seed Sci Technol 14:457–464

    Google Scholar 

  • Tarquis AM, Bradford KJ (1992) Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seeds. J Exp Bot 43(3):307–317

    Article  Google Scholar 

  • Taylor AG, Klein DE, Whitlow TH (1988) SMP: solid matrix priming of seeds. Sci Hortic 37:1–11

    Article  Google Scholar 

  • Taylor AG, Allen PS, Bennet MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8:245–256

    Article  Google Scholar 

  • Toledo VM (1977) Pollination of Some Rain Forest Plants by Non-Hovering Birds in Veracruz, Mexico. Biotropica 9(4):262

    Article  Google Scholar 

  • Toorop PE, Van AC, Hilhorst HWM (1998) Endosperm cap weakening and endo-beta-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Sci Res 8:483–491

    Article  CAS  Google Scholar 

  • Treshow M (1970) Mineral toxicity. In: Environment and plant response. McGraw-Hill, New York, pp 222–236

    Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signal Behav 5(6):635–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Troup RS (1921) The silviculture of Indian trees, vol 3. Clarendon Press, Oxford, pp 913–923

    Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) Subcellular basis of seed priming. Curr Sci 99(4):450–456

    CAS  Google Scholar 

  • Verma AN, Tandon P (2010) Seed germination and seedling growth in Pinus kesiya royle ex gord. I. Influence of imbibition, substrate pH and moisture level. Proc Indian Nat Sci Acad 50(3):326–331

    Google Scholar 

  • Vertucci CW (1989) The kinetics of seed imbibition: controlling factors and relevance to seedling vigor. Seed Moisture, pp 93–115

    Google Scholar 

  • Wang BSP, Lin TP, Chang TT (1998) Control of fungal growth with sphagnum for cold. 13(2):101–108

    Google Scholar 

  • Wang HY, Chen CL, Sung JM (2003) Both warm water soaking and matriconditioning treatments enhance anti-oxidation of bitter gourd seeds germinated at sub-optimal temperature. Seed Sci Technol 31(1):47–56

    Article  CAS  Google Scholar 

  • Warren JE, Bennett MA (1997) Seed hydration using the drum priming system. Hortic Sci 32:1220–1221

    Google Scholar 

  • Wu WS, Yang YH (1992) Alternaria blight: a seed-transmitted disease of zinnia in Taiwan. Plant Pathol Bull 1:115–123

    Google Scholar 

  • Young JA, Clements CD (2003) Seed germination of willow species from a desert riparian ecosystem. J Range Manag 56:496–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisodia, A., Padhi, M., Pal, A.K., Barman, K., Singh, A.K. (2018). Seed Priming on Germination, Growth and Flowering in Flowers and Ornamental Trees. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_14

Download citation

Publish with us

Policies and ethics