Skip to main content

Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures

  • Chapter
  • First Online:
Plant Nutrients and Abiotic Stress Tolerance

Abstract

Food productivity is decreasing with the drastic increase in population, while it is expected that the global population will be nine to ten billion in 2050. Growth, production, and development on whole plant, cell, and subcellular levels are extremely affected by environmental factors particularly with the extreme temperature events (high- or low-temperature stress). Increase in the fluidity of lipid membrane, protein accumulation, and denaturation are the direct effects of high temperature on a plant. Membrane integrity loss, protein deprivation, protein synthesis inhabitation, and inactivation of mitochondrial and chloroplast enzymes are the indirect effects of high temperature. Similarly, the oval abortion, alteration of the pollen tube, reduction in fruit set, pollen sterility, and flower abscission are the consequences of low temperature at the time of product development, which in turn lowers the yield. The judicious nutrient management is essential for improving the plant nutrition status to mitigate the drastic effects of temperature stress as well as for sustainable plant yield under extreme temperature events, because nutrient deficiency results in growth and development problems in 60% cultivars worldwide. Additionally, effective nutrient management increases the temperature stress tolerance in plants. Therefore, the appropriate nutrient application rates and timings are imperative for alleviating the heat stress in plants and can serve as an effective and decent strategy. To minimize the contrasting effects of the environmental stresses, particularly heat stress, several examples of the supplemental applications of N, P, K, Ca, Mg, Se, and Zn are given in detail in this study, to observe how these nutrients reduce the effects of temperature stress in plants. This study concluded that judicious nutrient management minimizes the heat stress and increases the growth and yield of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmo-protectants, and antioxidant metabolism. Acta Physiol Plant 37:1–15

    Article  CAS  Google Scholar 

  • Abdul-Baki AA, Stommel JR (1995) Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. HortScience 30:115–117

    Google Scholar 

  • Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A (2005) High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex Plant Reprod 18:91–100

    Article  CAS  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  • Aien A, Khetarpal S, Pal M (2011) Photosynthetic characteristics of potato cultivars grown under high temperature. Am–Eurasian J Agric Environ Sci 11:633–639

    Google Scholar 

  • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Al-Busaidi A, Ahmed M, Chikara J (2012) The impact of heat and water stress conditions on the growth of the biofuel plant Jatropha curcas. Int J Environ Stud 69:273–288

    Article  CAS  Google Scholar 

  • Alison WP, Glenn KM (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association, Brussels. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Amirjani M (2012) Estimation of wheat responses to “high” heat stress. Am-Eurasian J Sust Agric 6:222–233

    Google Scholar 

  • Anza M, Riga P, Garbisu C (2005) Time course of antioxidant responses of Capsicum annuum subjected to a progressive magnesium deficiency. Ann Appl Biol 146:123–134

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermo tolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Passera C, Cesco S (2003) Does the sulfur assimilation pathway play a role in the response to Fe deficiency in maize (Zea mays L.) plants. J Plant Nutr 26:2111–2121

    Article  CAS  Google Scholar 

  • Ata-Ul-Karim ST, Liu X, Lu Z, Yuan Z, Zhu Y, Cao W (2016) In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res 195:1–8

    Article  Google Scholar 

  • Ata-Ul-Karim ST, Liu X, Lu Z, Zheng H, Cao W, Zhu Y (2017a) Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res 201:32–40

    Article  Google Scholar 

  • Ata-Ul-Karim ST, Zhu Y, Cao Q, Rehmani MIA, Cao W, Tang L (2017b) In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. Eur J Agron 90:139–151

    Article  CAS  Google Scholar 

  • Bac-Molenaar JA, Fradin EF, Becker FFM, Rienstra JA, vander Schoot J, Vreugdenhil D, Keurentjes JJB (2015) Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell 27:1857–1874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakardjieva NT, Christov KN, Christova NV (2000) Effect of calcium and zinc on the activity and thermostability of superoxide dismutase. Biol Plant 43:73–78

    Article  CAS  Google Scholar 

  • Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38:158

    Article  CAS  Google Scholar 

  • Banon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Article  Google Scholar 

  • Bansal KC, Lenka SK, Mondal TK (2014) Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed 133:1–11

    Article  CAS  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bendixen R, Gerendás J, Schinner K, Sattelmacher B, Hansen UP (2001) Difference in zeaxanthin formation in nitrate-and ammonium-grown Phaseolus vulgaris. Physiol Plant 111:255–261

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4

    Google Scholar 

  • Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Borthwick H, Robbins W (1928) Lettuce seed and its germination. Calif Agric 3:275–304

    Google Scholar 

  • Brown RW (1977) Water relations of range plants. In: Sosebee RE (ed) Rangeland plant physiology, Range Science, vol 4. Soc For Range Manage, Denver, pp 97–140

    Google Scholar 

  • Brown MM, Ho LC (1993) Factors affecting calcium transport and basipetal IAA movement in tomato fruit in relation to blossom-end rot. J Exp Bot 44:1111–1117

    Article  CAS  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Tansley review no. 111 possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in crop production. Better Crops 94:23–25

    Google Scholar 

  • Caldwell MM, Richards JH, Johnson DA, Nowak RS, Dzurec RS (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia 50:14–24

    Article  PubMed  CAS  Google Scholar 

  • Craufurd PQ, Prasad PV, Summerfield RJ (2002) Dry matter production and rate of change of harvest index at high temperature in peanut. Crop Sci 42:146–151

    Article  PubMed  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Adams WW (2014) Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment. Phil Trans R Soc Lond B: Biol Sci 369:20130244

    Article  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Durán P, Acuña JJ, Armada E, López-Castillo OM, Cornejo P, Mora ML, Azcón R (2016) Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J Soil Sci Plant Nutr 16:211–225

    Google Scholar 

  • Eamus D, Taylor DT, Macinnis-NG CM, Shanahan S, De Silva L (2008) Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant Cell Environ 31:269–277

    Article  PubMed  Google Scholar 

  • Eckert RE Jr, Spencer JS (1987) Growth and reproduction of grasses heavily grazed under rest-rotation management. J Range Manage 40:156–159

    Article  Google Scholar 

  • Enns LC, McCully ME, Canny MJ (2006) Branch roots of young maize seedlings, their production, growth, and phloem supply from the primary root. Funct Plant Biol 33:391–399

    Article  PubMed  Google Scholar 

  • Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ 25:123–130

    Article  Google Scholar 

  • Essemine J, Ammar S, Bouzid S (2010) Physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah F (2015) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  PubMed  CAS  Google Scholar 

  • Fischer ES (1997) Photosynthetic irradiance response curves of Phaseolus vulgaris under moderate or severe magnesium deficiency. Photosynthetica (Czech Republic)

    Google Scholar 

  • Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiol Plant 89:271–276

    Article  CAS  Google Scholar 

  • Fisher FM, Parker LW, Anderson JP, Whitford WG (1987) Nitrogen mineralization in a desert soil: interacting effects of soil moisture and nitrogen fertilizer. Soil Sci Soc Am J 51:1033–1041

    Article  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Causes of photo oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Fuleky G (2009) Cultivated plants, primarily as food sources, vol 1. Oxford, Eolss Publishers Co Ltd.

    Google Scholar 

  • Gan Y, Wang J, Angadi SV, McDonald CL (2004) Response of chickpea to short periods of high temperature and water stress at different developmental stages. In: 4th International Crop Science Congress

    Google Scholar 

  • Gebbing T, Schnyder H, Kühbauch W (1999) The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant Cell Environ 22:851–858

    Article  Google Scholar 

  • Giorno F, Wolters-Arts M, Mariani C, Rieu I (2013) Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants 2:489–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goswami S, Kumar RR, Sharma SK, Kala YK, Singh K, Gupta R, Rai RD (2015) Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. J Plant Biochem Biotechnol 24:441–452

    Article  CAS  Google Scholar 

  • Graham AW (2004) Effects of zinc nutrition and high temperature on the growth, yield and grain quality of wheat (Triticum aestivum L.) (Doctoral dissertation)

    Google Scholar 

  • Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5–21

    Article  CAS  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Grewal JS, Singh SN (1980) Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant Soil 57:105–110

    Article  CAS  Google Scholar 

  • Gross Y, Kigel J (1994) Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.) Field Crops Res 36:201–212

    Article  Google Scholar 

  • Haghighi M, Abolghasemi R, da Silva JAT (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240

    Article  CAS  Google Scholar 

  • Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183

    Article  CAS  Google Scholar 

  • Haldimann P, Feller U (2005) Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ 28:302–317

    Article  CAS  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton. http://www.crcnetbase.com/doi/pdf/10.1201/9781420041088.fmatt

    Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Velicogna I (2015) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2° C global warming is highly dangerous. Atmos Chem Phys Discuss 15(14)

    Article  Google Scholar 

  • Hao HP, Jiang CD, Zhang SR, Tang YD, Shi L (2012) Enhanced thermal-tolerance of photosystem II by elevating root zone temperature in Prunus mira Koehne seedlings. Plant Soil 353:367–378

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies, Springer, Dordrecht, pp 261–315

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress, Springer, New York, pp 25–87

    Google Scholar 

  • Hassan IA (2006) Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44(2):312–315

    Article  CAS  Google Scholar 

  • Hassan IA, Zeid HA, Taia W, Haiba NS, Zahran A, Badr RH, Shalaby EA (2015) Fertilization regimes under hot conditions alter photosynthetic response of bean plants. Photosynthetica 53:157–160

    Article  CAS  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 418:2153–2161

    Article  Google Scholar 

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  PubMed  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68:177–188

    Article  CAS  Google Scholar 

  • Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357–364

    Article  CAS  Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bio 63:3455–3465

    CAS  Google Scholar 

  • Hurry VM, Malmberg G, Gardestrom P, Oquist G (1994) Effects of a short-term shift to low temperature and of longterm cold hardening on photosynthesis and ribulose-1, 5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol 106:983–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794

    Article  Google Scholar 

  • Huner NP, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Frontiers Plant Sci 7. doi: https://doi.org/10.3389/fpls.2016.00439. eCollection 2016

  • Hyder DN (1972) Defoliation in relation to vegetative growth. The biology and utilization of grasses 302–317

    Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103

    Article  PubMed  CAS  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2009) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) J Exp Bot 61:143–156

    Article  PubMed Central  CAS  Google Scholar 

  • Jagadish KS, Craufurd P, Shi W, Oane R (2014) A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.) Funct Plant Biol 41:48–55

    Article  CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    Article  PubMed  CAS  Google Scholar 

  • Johkan M, Oda M, Maruo T, Shinohara Y (2011) Crop production and global warming. In Global warming impacts-case studies on the economy, human health, and on urban and natural environments. InTech, Rijeka

    Google Scholar 

  • Kafkafi U (1990) Impact of potassium in relieving plants from climatic and soil-induced stresses. In: Johnston AE (ed) Food security in the WANA region, the essential need for balanced fertilization. International Potash Institute, Basel, pp 317–327

    Google Scholar 

  • Kaiser H, Drennen T (1993) Agricultural dimensions of global climate change. CRC Press

    Google Scholar 

  • Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Singh S (2008) Abiotic stress and plant responses. IK International, New Delhi

    Google Scholar 

  • Kim J, Shon J, Lee CK, Yang W, Yoon Y, Yang WH, Lee BW (2011) Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res 122:207–213

    Article  Google Scholar 

  • Kitano M, Saitoh K, Kuroda T (2006) Effects of high temperature on flowering and pod set in soybean. Sci Rep Fac Agric Okayama Univ 95:49–55

    Google Scholar 

  • Kolb PF, Robberecht R (1996) High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiol 16:665–672

    Article  PubMed  CAS  Google Scholar 

  • Kolupaev YE, Karpets YV (2003) Influence of exogenous calcium on the intensity of lipid peroxidation in winter wheat coleoptiles and their thermostability. Fiziol Biokh Kul’t Rast 35:68–74

    CAS  Google Scholar 

  • Kolupaev YE, Akinina GE, Mokrousov AV (2005) Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Russ J Plant Physiol 52:199–204

    Article  CAS  Google Scholar 

  • Kozai N, Beppu K, Mochioka R, Boonprakob U, Subhadrabandhu S, Kataoka I (2004) Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’ peach trees. J Horti Sci Biotechnol 79:533–537

    Article  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091

    Article  CAS  Google Scholar 

  • Larcher W (1980) Physiological plant ecology. Springer, Berlin. https://doi.org/10.1007/978-3-642-67637-6

    Book  Google Scholar 

  • Lauenroth WK, Detling JK, Milchunas DG, Dodd JL (1985) Impact of SO2 exposure on the response of Agropyron smithii to defoliation. J Range Manag 16–20

    Article  Google Scholar 

  • Ledesma NA, Nakata M, Sugiyama N (2008) Effect of high temperature stress on the reproductive growth of strawberry cvs.‘Nyoho’and ‘Toyonoka’. Sci Hortic 116:186–193

    Article  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity-a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'neill B, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.) J Agric Food Chem 58:10545–10552

    Article  PubMed  CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Q (2011) Temperature thresholds and crop production: a review. Clim Chang 109:583–598

    Article  Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187

    Article  CAS  Google Scholar 

  • Maduraimuthu D, Prasad PVV (2014) High temperature stress. In: Jackson M, Ford-Lloyd BV, Perry ML (eds) Plant genetic resources and climate change (CABI), pp 201–220

    Google Scholar 

  • Madzwamuse M (2010) Climate Governance in Africa: Adaptation Strategy and Institutions. A synthesis report submitted to Heinrich Böll Stiftung

    Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Mazorra LM, Nunez M, Hechavarria M, Coll F, Sanchez-Blanco MJ (2002) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593–596

    Article  CAS  Google Scholar 

  • Mckee J, Richards AJ (1998) The effect of temperature on reproduction in five Primula species. Ann Bot 82:359–374

    Article  Google Scholar 

  • Mendham NJ, Salisbury PA (1995) Physiology: crop development, growth and yield. In: Kimber DS, McGregor DI (eds) Brassica oilseeds, Production and utilization. CAB International, Wallingford, pp 11–64

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht. Ann Bot 93, pp 479–480

    Book  Google Scholar 

  • Mengutay M, Ceylan Y, Kutman UB, Cakmak I (2013) Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 368:57–72

    Article  CAS  Google Scholar 

  • Miller RF (1986) Response of cool season grasses to grazing. Short duration grazing: Proceedings of the short duration grazing and current issues in grazing management short course. Washington State University, Cooperative Extension, Washington, pp 159–164

    Google Scholar 

  • Minamide RT, Ho LC (1993) Deposition of calcium compounds in tomato fruit in relation to calcium transport. J Hortic Sci 68:755–762

    Article  CAS  Google Scholar 

  • Mishra S, Heckathorn SA, Frantz JM (2012) Elevated CO2 affects plant responses to variation in boron availability. Plant Soil 350:117–130

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mobin M (2010) Photosynthetic and physiological responses of Indian mustard (Brassica juncea L. Czern & Coss) plants as affected by sulfur starvation. EJ Environ Agric Food Chem 9:1316–1320

    CAS  Google Scholar 

  • Mobin M, Khan MN, Abbas ZK, Ansari HR, Al-Mutairi KA (2017) Significance of sulfur in heat stressed cluster bean (Cymopsis tetragonoloba L. Taub) genotypes: responses of growth, sugar and antioxidative metabolism. Arch Agron Soil Sci 63:288–295

    Article  CAS  Google Scholar 

  • MoE (2009) Climate change vulnerabilities in agriculture in Pakistan. Ministry of Environment, Government of Pakistan, Annual Report pp 1–6

    Google Scholar 

  • Mohammed AR, Tarpley L (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur J Agron 332:117–123

    Article  Google Scholar 

  • Mohapatra PK, Sarkar RK, Kuanar SR (2009) Starch synthesizing enzymes and sink strength of grains of contrasting rice cultivars. Plant Sci 176:256–263

    Article  CAS  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2005) Heat stress effects on protein accumulation of maize endosperm. Crop Sci 45:1203–1210

    Article  CAS  Google Scholar 

  • Morita S, Shiratsuchi H, Takahashi JI, Fujita K (2004) Effect of high temperature on grain ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese J Crop Sci (Japan)

    Google Scholar 

  • Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.) Ann Bot 95:695–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrow LA, Lorenz RJ, Rogler GA (1978) Using nitrogen fertilizer to renovate over grazed mixed prairie grasslands in the Northern Great plains. In: Hyder DN (ed) Proc. First Int. Rangeland congress. Soc. Range Manage. Denver, Colo, pp 675–677

    Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  PubMed  CAS  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 1291:185–195

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • OECD (2009) Integrating climate change into development cooperation: policy guidance. Environment Directorate. ISBN Number: 9789264054769

    Google Scholar 

  • Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genom 278:31–42

    Article  CAS  Google Scholar 

  • Palta JP (1990) Stress interactions at the cellular and membrane levels. Hortic Sci 25:1377–1381

    CAS  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Peet MM, Willits DH, Gardner R (1997) Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48:101–111

    Article  CAS  Google Scholar 

  • Peet MM, Sato S, Gardner RG (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ 21:225–231

    Article  Google Scholar 

  • Pelligrini N, Chiavaro E, Gardana C et al (2011) Phytochemical concentrations and antioxidants capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58:4310–4321

    Article  CAS  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Introduction J Pharm Phytopharm Res 1:194–202

    CAS  Google Scholar 

  • Porch TG, Jahn M (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731

    Article  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Article  Google Scholar 

  • Power JF (1983) Recovery of nitrogen and phosphorus after 17 years from various fertilizer materials applied to crested wheatgrass. Agron J 75:249–254

    Article  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006a) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Article  Google Scholar 

  • Prasad PV, Boote KJ, Allen LH (2006b) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast ef-tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  • Rahman MM (2004) Response of wheat genotypes to late seeding heat stress (Doctoral dissertation, MS Thesis. Department of Crop Botany. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh)

    Google Scholar 

  • Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 27:959–975

    Article  CAS  Google Scholar 

  • Rauzi F, Fairbourn ML (1983) Effects of annual applications of low N fertilizer rates on a mixed grass prairie. J Range Manag 359–362

    Article  Google Scholar 

  • Reda F, Mandoura HM (2011) Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum l.) in the presence or absence of exogenous proline or cysteine. Int J Academic Res 3(4)

    Google Scholar 

  • Reynolds MP, Gutierrez-Rodriguez M, Larque-Saavedra A (2000) Photosynthesis of wheat in a warm, irrigated environment: I: genetic diversity and crop productivity. Field Crops Res 66:37–50

    Article  Google Scholar 

  • Ridolfi M, Garrec JP (2000) Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Ann For Sci 57:209–218

    Article  Google Scholar 

  • Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    Article  PubMed  CAS  Google Scholar 

  • Roberts EH (1988) Temperature and seed germination. In: Long P, Woodward FI (eds) Plants and temperature. Cambridge. In Symposia of the Society for Experimental Biology, Company of Biologists, pp 109–132

    Google Scholar 

  • Saha SR, Hossain MM, Rahman MM, Kuo CG, Abdullah S (2010) Effect of high temperature stress on the performance of twelve sweet pepper genotypes. Bangladesh J Agr Res 35:525–534

    Google Scholar 

  • Saitoh H (2008) Ecological and physiology of vegetable. Nousangyoson Bunka Kyoukai, Tokyo

    Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Salinas JULIO (2002) Molecular mechanisms of signal transduction in cold acclimation. Plant Sig Transduct 38:116

    CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2000) Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ 23:719–726

    Article  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster WS, Monson RK (1990) An examination of the advantages of C3-C4 intermediate photosynthesis in warm environments. Plant Cell Environ 13:903–912

    Article  Google Scholar 

  • Scifres CJ (1980) Brush management: principles and practices for Texas and the Southwest. Texas A & M University Press

    Google Scholar 

  • Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221:56–65

    Article  PubMed  CAS  Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agr Sci 149:545–556

    Article  CAS  Google Scholar 

  • Shakoor U, Saboor A, Ali I, Mohsin AQ (2011) Impact of climate change on agriculture: empirical evidence from arid region. Pak J Agri Sci 48:327–333

    Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature stress. In: Physiology and molecular biology of stress tolerance in plants, Springer Netherlands, pp 101–129

    Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:307–321

    Article  Google Scholar 

  • Shi W, Xiao G, Struik PC, Jagadish KS, Yin X (2016) Quantifying source-sink relationships of rice under high night-time temperature combined with two nitrogen levels. Field Crops Res 202:36–46

    Article  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Smolik JD (1977) Effect of nematicide treatment on growth of range grasses in field and glasshouse studies. The belowground ecosystem: a synthesis of plant-associated processes. Range Sci Dep Sci Ser 26:257–260

    CAS  Google Scholar 

  • Soundararajan P, Sivanesan I, Jana S, Jeong BR (2014) Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hort Environ Biotechnol 55:271–279

    Article  CAS  Google Scholar 

  • Starck Z, Witek-Czupryńska B (1993) Diverse response of tomato fruit explants to high temperature. Acta Soc Bot Poloniae 62:165–169

    Article  Google Scholar 

  • Stern N, Peters S, Bakhshi V, Bowen A, Cameron C, Catovsky S, Garbett SL (2006) Stern review on the economics of climate change. HM Treasury, London. 2006

    Google Scholar 

  • Stone P (2001) The effects of heat stress on cereal yield and quality. Crop responses and adaptations to temperature stress, pp 243–291

    Google Scholar 

  • Stotzky G, Cox EA (1962) Seed germination studies in Musa. II. Alternating temperature requirement for the germination of Musa balbisiana. Am J Bot 763–770

    Article  Google Scholar 

  • Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540

    Article  PubMed  CAS  Google Scholar 

  • Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, Fujita K (2010) High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem 48:124–130

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler RON, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Takeoka Y, Hiroi K, Kitano H, Wada T (1991) Pistil hyperplasia in rice spikelets as affected by heat stress. Sex Plant Reprod 4:39–43

    Article  Google Scholar 

  • Tan W, wei Meng Q, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  PubMed  CAS  Google Scholar 

  • Tang T, Xie H, Wang Y, Lü B, Liang J (2009) The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.) J Exp Bot 60:2641–2652

    Article  PubMed  CAS  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Chang 79:185–211

    Article  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses—influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic 108:7–14

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Trappe JM (1981) Mycorrhizae and productivity of arid and semiarid range lands. In: Manassah JT, Briskey EJ (eds) Advances in food producing systems for arid and semiarid lands. Academic, New York, pp 581–599

    Chapter  Google Scholar 

  • Turhan E, Karni L, Aktas H, Deventurero G, Chang DC, Bar-Tal A, Aloni B (2006) Apoplastic anti-oxidants in pepper (Capsicum annuum L.) fruit and their relationship to blossom-end rot. J Hortic Sci Biotechnol 81:661–667

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol Osmosens Osmosignal 428:419–438

    Article  CAS  Google Scholar 

  • Tuteja N (2010) Cold, salinity, and drought stress. Plant Stress Biology: From Genomics to Systems Biol 137–159

    Google Scholar 

  • Ulukan H (2008) Agronomic adaptation of some field crops: a general approach. J Agron Crop Sci 194:169–179

    Article  Google Scholar 

  • Valentine JF (1980) Range development and improvements. Brigham Young Univ. Press, Provo

    Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY, Saifullah, Ahmad M (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand Sect B Soil Plant Sci 61:291–304

    CAS  Google Scholar 

  • Watanabe T, Kume T (2009) A general adaptation strategy for climate change impacts on paddy cultivation: special reference to the Japanese context. Paddy Water Environ 7:313

    Article  Google Scholar 

  • Wight JR (1976) Range fertilization in the Northern Great Plains. J Range Manag 29:180–185

    Article  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf S, Marani A, Rudich J (1990) Effects of temperature and photoperiod on assimilate partitioning in potato plants. Ann Bot 66:513–520

    Article  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xu Q, Huang B (2000) Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci 40:1363–1368

    Article  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. Rev Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Amamoto Y (2008) Quality control of photosystem II reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283:28380–28391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JD, Yun JY, Zhang TH, Zhao HL (2006) Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot Stud 47:129–136

    CAS  Google Scholar 

  • Yang W, Sun Y, Chen S, Jiang J, Chen F, Fang W, Liu Z (2011) The effect of exogenously applied nitric oxide on photosynthesis and antioxidant activity in heat stressed chrysanthemum. Biol Plant 55:737–740

    Article  CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Tekis SA (2017) The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in Zea mays roots treated with combined osmotic and heat stress. Arch Agron Soil Sci 63:261–275

    Article  CAS  Google Scholar 

  • Young RP (1983) Fire as a vegetation management tool in rangelands of the Intermountain Region [Includes list of common and scientific names of plant species in the sagebrush and pinyon-juniper zones, United States; Idaho; Nevada; Utah; Wyoming]. USDA Forest Service general technical report INT Intermountain Forest and Range Experiment Station

    Google Scholar 

  • Yu Q, Osborne LD, Rengel Z (1999) Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Ann Bota 84:543–547

    Article  CAS  Google Scholar 

  • Zakaria S, Matsuda T, Tajima S, Nitta Y (2002) Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci 5:160–168

    Article  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  PubMed  CAS  Google Scholar 

  • Zhang GL, Chen LY, Zhang ST, Zheng H, Liu GH (2009) Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Sci 16:65–71

    Article  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao WY, Xu S, Li JL, Cui LJ, Chen YN, Wang JZ (2008) Effects of foliar application of nitrogen on the photosynthetic performance and growth of two fescue cultivars under heat stress. Biol Plant 52:113–116

    Article  CAS  Google Scholar 

  • Zhu Z, Gerendas J, Bendixen R, Schinner K, Tabrizi H, Sattelmacher B, Hansen UP (2000) Different tolerance to light stress in NO3 – and NH4+-grown Phaseolus vulgaris L. Plant Biol 2:558–570

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zróbek-Sokolni A (2012) Temperature stress and responses of plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 113–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalil, U. et al. (2018). Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_21

Download citation

Publish with us

Policies and ethics