Skip to main content

The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms

  • Chapter
  • First Online:

Abstract

Sulfur (S) is an essential macronutrient in plants that serves numerous plant functions and is vital for the metabolic processes. Moreover, it is the constituent of some essential amino acids and metabolites. Recent studies have provided the notion that S not only improves the productivity of plants under normal condition but also protects them from abiotic stresses like salinity, drought, and toxic metals/metalloids. Different S compounds directly act as antioxidants or modulate antioxidant defense system. Among them, glutathione (GSH) is regarded as one of the powerful antioxidants and stress protectors. Interactions of S with other biological molecules afford stress signaling to provide defense against environmental stresses. However, the S uptake, translocation, and mechanisms of action in plants under stressful conditions are still under research. The recent progress on the roles of S in conferring abiotic stresses and related literature is presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ACS:

1-Aminocyclopropane carboxylic acid (ACC) synthase (ACS)

APK:

APS kinase

APR:

Adenosine-5′-phosphosulfate reductase

APS:

Adenosine-5′-phosphosulfate

APX:

Ascorbate peroxidase

AsA:

Ascorbate

ATP:

Adenosine triphosphate

ATPS:

ATP sulfurylase

CAT:

Catalase

CBL:

Cystathionine β-lyase

CGS:

Cystathionine γ-synthase

CSC:

Cysteine synthase complex

Cys:

Cysteine

Cyst:

Cystathionine

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

EF-TU:

Elongation factor-thermo unstable

GAPDH:

Glyceraldehyde-3-P-dehydrogenase

GB:

Glycine betaine

GCL:

Glutamate-cysteine ligase

Gly I:

Glyoxalase I

Gly II:

Glyoxalase II

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GRX:

Glutaredoxins

GSH:

Glutathione

GSHS:

Glutathione synthetase

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

h-GSH:

Homo-GSH

JA:

Jasmonates

LOX:

Lipoxygenase

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

Met:

Methionine

MG:

Methylglyoxal

MRNA:

Messenger ribonucleic acid

MS:

Methionine synthase

NaHS:

Sodium hydrosulfide

NPT:

Nonprotein thiol

OAS:

O-Acetylserine

OASS:

O-Acetylserine sulfhydrylase

OAS-TL:

OAS(thiol)lyase

OPH:

O-Phosphohomoserine

PAPS:

3-Phosphoadenosine-5-phosphosulfate

PCs:

Phytochelatins

PEG:

Polyethylene glycol

POD:

Peroxidase

POX:

Peroxidases

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SAT:

Serine acetyltransferase

Ser:

Serine

SiR:

Sulfite reductase

SLG:

S-d-Lactoylglutathione

SOD:

Superoxide dismutase

SULTR:

Proton/SO4 2−cotransporter in plants

SURE:

Sulfur-responsive element

TBARS:

Thiobarbituric acid reactive substances

TRX:

Thioredoxins

γ-ECS:

γ-Glutamylcysteine synthetase

γ-GluCys:

γ-Glutamylcysteine

References

  • Abdallah M, Dubousse L, Meuriot F, Etienne P, Avice JC, Ourry A (2010) Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J Exp Bot 61:2635–2646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdin MZ, Ahmad A, Khan N, Khan I, Jamal A, Iqbal M (2003) Sulphur interaction with other nutrients. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 359–374

    Chapter  Google Scholar 

  • Ahmad N, Malagoli M, Wirtz M, Hell R (2016) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16:247. https://doi.org/10.1186/s12870-016-0940-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:210. https://doi.org/10.3389/fpls.2015.00210

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    Article  PubMed  CAS  Google Scholar 

  • Asgher M, Per TS, Anjum S, Khan MIR, Masood A, Verma S, Khan NA (2017) Contribution of glutathione in heavy metal stress tolerance in plants. In: Khan M, Khan N (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 297–313

    Chapter  Google Scholar 

  • Astolfi S, Zuchi S (2013) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181

    Article  CAS  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2012) Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot 4:19–32

    Google Scholar 

  • Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AOB Plants 7:1–13

    Article  CAS  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  PubMed  Google Scholar 

  • Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchner P, Stuiver CE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, Kok LJD (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabreiro F, Picot CR, Friguet B, Petropoulos I (2006) Methionine sulfoxide reductases. Ann N Y Acad Sci 1067:37–44

    Article  CAS  PubMed  Google Scholar 

  • Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72–78

    Article  PubMed  CAS  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  PubMed  CAS  Google Scholar 

  • Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  PubMed  CAS  Google Scholar 

  • Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA (2015) Sulfur metabolism and stress defense responses in plants. Tropl Plant Biol 8:60–73

    Article  CAS  Google Scholar 

  • Carciochi WD, Divito GA, Fernández LA, Echeverría HE (2017) Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J Plant Nutr 40:1231–1242

    Article  CAS  Google Scholar 

  • Çevik S, Ünyayar S (2015) The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. J Nat Appl Sci 19:91–97

    Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Wang WH, Wu FH, You CY, Liu WT, Dong XJ, He JX, Zheng HL (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318

    Article  CAS  Google Scholar 

  • Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 5:12516. https://doi.org/10.1038/srep12516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173. https://doi.org/10.3389/fpls.2016.01173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192

    Article  PubMed  CAS  Google Scholar 

  • Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83:926–939

    Article  PubMed  CAS  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopouls V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. J Plant Growth Regul 62:241–255

    Article  CAS  Google Scholar 

  • Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zheng J, Shen W (2014) Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases. PLoS One 9:e109669. https://doi.org/10.1371/journal.pone.0109669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Hooghe P, Escamez S, Trouverie J, Avice JC (2013) Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms. BMC Plant Biol 13:23. https://doi.org/10.1186/1471-2229-13-23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daud MK, Mei L, Azizullah A, Dawood M, Ali I, Mahmood Q, Ullah W, Jamil M, Zhu SJ (2016) Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6739-5

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation the same or not the same? Mol Plant 3:314–325

    Article  PubMed  CAS  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016) Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep 6:35424. https://doi.org/10.1038/srep35424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Suman S, Adhikari B, Shukla Y, Trivedi PK, Pandey V, Tripathi RD (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:16205. https://doi.org/10.1038/srep16205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015b) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos CV, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922

    Article  PubMed Central  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyl transferase and O-acetylserine (thiol) lyase in higher plants – structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245

    Article  PubMed  CAS  Google Scholar 

  • Du X, Jin Z, Liu D, Yang G, Pei Y (2017) Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol Biochem 120:112–119

    Article  PubMed  CAS  Google Scholar 

  • Egesel CO, Gul MK, Kahriman F (2009) Changes in yield and seed quality traits in rapeseed genotypes by sulphur fertilization. Eur Food Res Technol 229:505–513

    Article  CAS  Google Scholar 

  • Erdala S, Turk H (2016) Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress. Environ Exp Bot 132:92–99

    Article  CAS  Google Scholar 

  • Fang T, Cao Z, Li J, Shen W, Huang L (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51

    Article  PubMed  CAS  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T (2012) The proteome response of Hordeum spontaneum to salinity stress. Cereal Res Commun 39:6387–6397

    CAS  Google Scholar 

  • Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    Article  CAS  Google Scholar 

  • Fu J, Liu CP, Zhang ZW, Xing MW, Xu SW (2013) Influence of inflammatory pathway markers on oxidative stress induced by cold stress in intestine of quails. Res Vet Sci 95:495–501

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580. https://doi.org/10.3389/fpls.2014.00580

    Article  PubMed  PubMed Central  Google Scholar 

  • Genisel M, Erdal S, Kizilkaya M (2014) The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul 75:187–197

    Article  CAS  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442. https://doi.org/10.3389/fpls.2014.00442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilabel AP, Nogueirol RC, Garbo AI, Monteiro FA (2014) The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water Air Soil Pollut 225:1806. https://doi.org/10.1007/s11270-013-1806-8

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Haag AF, Kerscher B, Dall’Angelo S, Sani M, Longhi R, Baloban M, Wilson HM, Mergaert P, Zanda M, Ferguson GP (2012) Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J Biol Chem 287:10791–10798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061. https://doi.org/10.3389/fpls.2017.01061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017a) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017b) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2012) Sulfate uptake and assimilation–whole plant regulation. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton R, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants. Springer, Dordrecht, pp 11–24

    Chapter  Google Scholar 

  • Hirani AH, Li G, Zelmer CD, McVetty PBE, Asif M, Goyal A (2012) Molecular genetics of glucosinolate biosynthesis in brassicas: genetic manipulation and application aspects. In: Goyal A (ed) Crop plant. InTech, Rijeka, pp 189–216

    Google Scholar 

  • Hopkins L, Parmar S, Blaszczyk A, Hesse H, Hoefgen R, Hawkesford MJ (2005) O-Acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138:433–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howarth JR, Fourcroy P, Davidian JC, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infection by the vascular pathogen Verticillium dahlia. Planta 218:58–64

    Article  PubMed  CAS  Google Scholar 

  • Hu KD, Bai GS, Li WJ, Yan H, Hu LY, Li YH, Zhang H (2014) Sulfur dioxide promotes germination and plays an antioxidant role in cadmium-stressed wheat seeds. J Plant Growth Regul 75:271–280

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar R, Syeed S, Masood A, Khan NA (2011) Exogenously- sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot 62:4955–4963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iqbal N, Khan NA, Nazar R, da Silva JAT (2012) Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environ Exp Bot 78:84–90

    Article  CAS  Google Scholar 

  • Jankowski K, Budzyński W, Szymanowski A (2008) Effect of sulphur on the quality of winter rape seeds. J Entomol 13:521–534

    Google Scholar 

  • Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486

    Article  PubMed  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasajima I, Ohkama-Ohtsu N, Ide Y, Hayashi H, Yoneyama T, Suzuki Y, Naito S, Fujiwara T (2007) The BIG gene is involved in regulation of sulfur deficiency-responsive genes in Arabidopsis thaliana. Physiol Plant 129:351–363

    Article  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004a) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004b) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Iqbal N, Khan NA (2013) Potentiality of Sulphur-containing compounds in salt stress tolerance. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 443–472

    Chapter  Google Scholar 

  • Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:120. https://doi.org/10.4172/2329-9029.1000120

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Koprivova A, Kopriva S (2008) Lessons from investigation of regulation of APS reductase by salt stress. Plant Signal Behav 3:567–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Koprivova A, Kopriva S (2014) Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front Plant Sci 5:589. https://doi.org/10.3389/fpls.2014.00589

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Singla-Pareek SL, Sopory SK (2010) Glutathione homeostasis: crucial for abiotic stress tolerance in plants. In: Pareek A, Sopory SK, Bohnert JH, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp 263–282

    Google Scholar 

  • Lancilli C, Giacomini B, Lucchini G, Davidian JC, Cocucci M, Sacchi GA, Nocito FF (2014) Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1;2) genes in Brassica juncea. BMC Plant Biol 14:132. https://doi.org/10.1186/1471-2229-14-132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee BR, Koprivova A, Kopriva S (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J 67:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105:8197–8202

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ J Plant Physiol 60:733. https://doi.org/10.1134/S1021443713060058

    Article  CAS  Google Scholar 

  • Li ZG (2015) Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e1051278. https://doi.org/10.1080/15592324.2015.1051278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG, He QQ (2015) Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (Vigna radiata). Biologia 70:753–759

    CAS  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013a) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  PubMed  CAS  Google Scholar 

  • Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013b) Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:1564–1572

    Article  PubMed  CAS  Google Scholar 

  • Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Chen T (2015) Involvement of sulfhydryl compounds and antioxidant enzymes in H2S-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension-cultured cells. In Vitro Cell Dev Biol-Plant 51:428–437

    Article  CAS  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621. https://doi.org/10.3389/fpls.2016.01621

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang T, Ding H, Wang G, Kang J, Pang H, Lv J (2016) Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol Environ Saf 124:129–137

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yang Y, Deng X, Li M, Zhang W, Zhao Z (2017) Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environ Exp Bot 135:13–20

    Article  CAS  Google Scholar 

  • Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J (2017) Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci 18:1628. https://doi.org/10.3390/ijms18081628

    Article  PubMed Central  Google Scholar 

  • Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective path ways. Physiol Plant 134:508–521

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, Xie Y, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One 11:e0163082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Berlin, pp 209–229

    Chapter  Google Scholar 

  • Mária V, Ladislav D, Pavel R (2017) Sulphur nutrition and its effect on yield and oil content of oilseed rape (Brassica Napus L.) Acta Univ Agric Et Silvic Mendel Brun 65:555–562

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004a) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340–345

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004b) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazid M, Khan ZH, Quddusi S, Taqi AK, Firoz M (2011) Significance of Sulphur nutrition against metal induced oxidative stress in plants. J Stress Physiol Biochem 7:165–184

    Google Scholar 

  • Min Y, Ping QB, Xue-li M, Ping W, Mei-ling L, Lu-lu C, Lei-tai C, Ai-qing S, Zhen-lin W, Yan-ping Y (2016) Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.) J Integr Agric 15:2745–2758

    Article  CAS  Google Scholar 

  • Mobin M, Khan MN, Abbas ZK, Ansari HR, Al-Mutairi KA (2016) Significance of sulfur in heat stressed cluster bean (Cymopsis tetragonoloba L. Taub) genotypes: responses of growth, sugar and antioxidative metabolism. Arch Agron Soil Sci 63:288–295

    Article  CAS  Google Scholar 

  • Mukhtar I, Shahid MA, Khan MW, Balal RM, Iqbal MM, Naz T, Zubair M, Ali HH (2016) Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil Environ 35:56–64

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7. doi:https://doi.org/10.1093/aobpla/plv069

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015c) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59:745–756

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Physiological roles of glutathione in conferring abiotic stress tolerance to plants. In: Gill SS, Tuteja N (eds) Abiotic stress response in plants. Wiley, Weinheim, pp 151–179

    Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Nishida S, Duan G, Ohkama-Ohtsu N, Uraguchi S, Fujiwara T (2016) Enhanced arsenic sensitivity with excess phytochelatin accumulation in shoots of a SULTR1; 2 knockout mutant of Arabidopsis thaliana (L.) Heynh. Soil Sci Plant Nutr 62:367–372

    Article  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Giacomini B, Sacchi GA (2007) Sulphur metabolism and cadmium stress in higher plants. Plant Stress 1:142–156

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys Res Commun 423:417–423

    Article  PubMed  CAS  Google Scholar 

  • Osman AS, Rady MM (2012) Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of and pea (Pisum sativum L.) plants grown in reclaimed saline soil. J Hortic Sci Biotechnol 87:626–632

    Article  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411:319–332

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2011) Assembly of the photosynthetic apparatus. Plant Physiol 155:1493–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276

    Article  CAS  PubMed  Google Scholar 

  • Salvagiotti F, Castellarín JM, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res 113:170–177

    Article  Google Scholar 

  • Scherer HW (2008) Impact of sulphur on N2 fixation of legumes. In: Khan NA, Singh S, Umar S (eds) Sulphur assimilation and abiotic stresses in plants. Springer-Verlag, New York, pp 43–54

    Chapter  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Bot 57:711–726

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pie Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by MicroRNA expressions. PLoS One 8:e77047. https://doi.org/10.1371/journal.pone.0077047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382. https://doi.org/10.3389/fpls.2016.01382

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.) Plant Physiol Biochem 74:99–107

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ye T, Han N, Bian H, Liu X, Chan Z (2015) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 57:628–640

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and Sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A 92:9373–9377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366:647–658

    Article  CAS  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 207–225

    Chapter  Google Scholar 

  • Srivastava S, D’souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (Lf) Royle. Ecotoxicol Environ Saf 73:1314–1322

    Article  PubMed  CAS  Google Scholar 

  • Sun XM, Lu B, Huang SQ, Mehta SK, Xu LL, Yang ZM (2007) Coordinated expression of sulfate transporters and its relation with sulfur metabolitesin Brassica napus exposed to cadmium. Bot Stud 48:43–54

    CAS  Google Scholar 

  • Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The role of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Gabriel-Neumann E, Ngwene B, Krumbein A, George E, Platz S, Rohn S, Schreiner M (2014) Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem 152:190–196

    Article  PubMed  CAS  Google Scholar 

  • Walker KC, Booth (2003) Sulphur nutrition and oilseed quality. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 323–339

    Chapter  Google Scholar 

  • Wang F, Chen F, Cai Y, Zhang G, Wu F (2011) Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res 144:1275–1288

    Article  PubMed  CAS  Google Scholar 

  • Wawrzyńska A, Lewandowska M, Sirko A (2010) Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot 61:889–900

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y (2017) Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 7:2615. https://doi.org/10.1038/s41598-017-02872-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, Konig S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu JC, Sun SH, Ke YT, Xie CP, Chen FX (2011) Effects of glutathione on chloroplast membrane fluidity and the glutathione circulation system in young loquat fruits under low temperature stress. Acta Hortic 887:221–225

    Article  CAS  Google Scholar 

  • Yatusevich R, Mugford SG, Matthewman C, Gigolashvili T, Frerigmann H, Delaney S, Koprivova A, Flugge UI, Kopriva S (2010) Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J 62:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    Article  CAS  Google Scholar 

  • Zhu DB, Hu KD, Guo XK, Liu Y, Hu LY, Li YH, Wang SH, Zhang H (2015) Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat seeds. Oxidative Med Cell Longev. https://doi.org/10.1155/2015/612363

Download references

Acknowledgments

The authors acknowledge Khursheda Parvin and Sayed Mohammad Mohsin, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan, for critic reading and formatting of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasanuzzaman, M., Hossain, M.S., Bhuyan, M.H.M.B., Al Mahmud, J., Nahar, K., Fujita, M. (2018). The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_10

Download citation

Publish with us

Policies and ethics