Skip to main content

Role of Bacterial Consortia in Bioremediation of Textile Recalcitrant Compounds

  • Chapter
  • First Online:
Waste Bioremediation

Abstract

The increasing industrial demand for remediating the textile wastewater in an effective way has led to the pervasive acceptance of bioremediation. Bioremediation techniques such as bioaccumulation, biosorption, bioaugmentation, and biodegradation utilize the biological systems to treat the textile effluents containing the recalcitrant dye molecules. Bioremediation is known to be environmentally reliable and is an alternative to the conventional decomposition techniques with the prerequisite to fulfill the efficacy and economic viability. Among the aforementioned bio-remedial measures, biodegradation of the textile dyes is the trustworthy industrial application. Biodegradation of dyes can be achieved using single bacterial strains and co-cultures/consortia. The consortial systems are proven to be advantageous over a single strain as they involve an inductive synergistic mechanism among the co-existing strains. As a result of this co-metabolism, there is a formation of different intermediate metabolites such as toxic aromatic amines which are furthermore mineralized by the other bacterial strains in the consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkaya A, Ozseker EE, Akdogan HA (2016) Degradation of dyes by laccase. Anal Lett 49(6):790–798

    Article  CAS  Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Biores Technol 98(11):2082–2088

    Article  CAS  Google Scholar 

  • Ayed L, Khelifi E, Jannet HB (2010) Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: produced enzymes and metabolites characterization. Chem Eng J 165(1):200–208

    Article  CAS  Google Scholar 

  • Bagewadi ZK, Vernekar AG, Patil AY et al (2011) Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnol, Bioinfor Bioeng 1(3):351–360

    Google Scholar 

  • Balaji N, Kumar KS, Vinodhini G et al (2016) Immobilization of laccase onto micro-emulsified magnetic nanoparticles for enhanced degradation of a textile recalcitrant. J Environ Biol 37(6):1489–1496

    Google Scholar 

  • Bilińska L, Gmurek M, Ledakowicz S (2016) Comparison between industrial and simulated textile wastewater treatment by AOPS—Biodegradability, toxicity and cost assessment. Chem Eng J 306:550–559

    Article  Google Scholar 

  • Bourbonnais R, Paice MG (1988) Veratrol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 255(2):445–450

    Article  CAS  Google Scholar 

  • Burkinsha SM (2016) Physico-chemical aspects of textile coloration, society of dyers and colorists. Wiley, United Kingdom

    Book  Google Scholar 

  • Chen BY, Chang JS (2007) Assessment upon species evolution of mixed consortia for azo dye decolorization. J Chin Inst Chem Eng, 38(3–4):259–266

    CAS  Google Scholar 

  • Cronje GL, Beeharry AO, Wentzel MC et al (2002) Active biomass in activated sludge mixed liquor. Water Res 36(2):439–444

    Article  CAS  Google Scholar 

  • Dafale N, Rao NN, Meshram SU et al (2008) Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium-biostimulation and halo tolerance. Biores Technol 99(7):2552–2558

    Article  CAS  Google Scholar 

  • Dawkar VV, Jadhav UU, Ghodake GS et al (2009) Effect of inducers on the decolorization and bio-degradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20(6):777–787

    Article  CAS  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MHM et al (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  Google Scholar 

  • Forss J, Lindh MV, Pinhassi J et al (2017) Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved. PLoS ONE 12(1):e0170562

    Article  Google Scholar 

  • Goswami O (1990) Sickness and growth of India’s textile industry: Analysis and policy options. Econ Polit Wkly 25(45):2496–2506

    Google Scholar 

  • Herrero M, Stuckey DC (2014) Bioaugmentation and its application in wastewater treatment: a review. Chemosphere 140:119–128

    Article  Google Scholar 

  • Jadhav JP, Parshetti GK, Kalme SD et al (2007) Decolorization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68(2):394–400

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA et al (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Biores Technol 101(1):165–173

    Article  CAS  Google Scholar 

  • Jain K, Shah V, Chapla D et al (2012) Decolorization and degradation of azo dye-reactive violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J Hazard Mater 213–214:378–386

    Article  Google Scholar 

  • Jirasripongpun K, Nasanit R, Niruntasook J et al (2007) Decolorization and degradation of C.I. Reactive Red 195 by Enterobacter sp. Thammasat International. J Sci Technol 12(4):6–11

    Google Scholar 

  • Joshi T, Iyengar L, Singh K et al (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Biores Technol 99(15):7115–7121

    Article  CAS  Google Scholar 

  • Joshi PA, Jaybhaye S, Mhatre K (2015) Biodegradation of dyes using consortium of bacterial strains isolated from textile effluent. Eur J Exp Biol 5(7):36–40

    CAS  Google Scholar 

  • Joshi N, Dholakiya RN, Kumar MA et al (2017) Recycling of starch processing industrial wastewater as a sole nutrient source for the bioflocculant production. Environ Progr Sustain Energy. doi:https://doi.org/10.1002/ep.12608

  • Junnarkar N, Murty DS, Bhatt NS et al (2006) Decolorization of diazo dye direct red 81 by a novel bacterial consortium. World J Microbiol Biotechnol 22(2):163–168

    Article  CAS  Google Scholar 

  • Kabra AN, Khandare RV, Kurade MB et al (2011) Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ Sci Pollut Res 18(8):1360–1373

    Article  CAS  Google Scholar 

  • Karthikeyan S, Kumar MA, Maharaja P et al (2014) Process optimization for the treatment of pharmaceutical wastewater catalyzed by poly sulpha sponge. J Taiwan Inst Chem Eng 45(4):1739–1747

    Article  CAS  Google Scholar 

  • Karthikeyan V, Kumar MA, Mohanapriya P et al (2017) Biodegradation of remazol brilliant blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ Technol. doi:https://doi.org/10.1080/09593330.2017.1369579

  • Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. Environmental Deterioration and Human Health, Springer, Netherlands

    Book  Google Scholar 

  • Khan S, Malik A (2016) Degradation of reactive black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62(3):220–232

    Article  Google Scholar 

  • Khehra MS, Saini HS, Sharma DK et al (2005) Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res 39(20):5135–5141

    Article  CAS  Google Scholar 

  • Kim MH, Kim Y, Park HJ et al (2008) Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase. J Biol Chem 283(46):31981–31990

    Article  CAS  Google Scholar 

  • Komal J, Kumar MA, Thiruvengadaravi KV et al (2017) Indigenously acclimatized bacterial consortium for anthracene biotransformation. Energy Sources, Part A: Recovery, Utilization, Environ Eff 39(5):528–537

    Article  CAS  Google Scholar 

  • Kuhad RC, Sood N, Tripathi KK et al (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213

    Article  CAS  Google Scholar 

  • Kumar K, Devi SS, Krishnamurthi K et al (2007) Decolorization and detoxification of direct blue-15 by a bacterial consortium. Biores Technol 98(16):3168–3171

    Article  CAS  Google Scholar 

  • Kumar MA, Kumar VV, Premkumar MP (2012) Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and hetero-polyaromatic dyes. Biores Technol 123:344–351

    Article  CAS  Google Scholar 

  • Kumar MA, Vijayalakshmi A, Lincy EAR et al (2014) Biotransformation of Reactive Black HEBL into 3-nitroso-3-azabicyclo (3.2.2) nonane by an acclimated mixed culture. International Journal of ChemTech Research 6(9): 4172–4179

    Google Scholar 

  • Kumar MA, Kumar VV, Ponnusamy R et al (2015) Concomitant mineralization and detoxification of acid red 88 by an indigenous acclimated mixed culture”. Environ Progr Sustain Energy 34(5):1455–1466

    Article  Google Scholar 

  • Kumar MA, Harthy DK, Kumar VV et al (2016a) Detoxification of a triphenylmethane textile colorant using acclimated cells of Bacillus mannanilyticus strain AVS. Environ Progr Sustain Energy 36(2):394–403

    Article  Google Scholar 

  • Kumar MA, Priyadarshini R, Seenuvasan M et al (2016b) Biotransformation and detoxification of a greater tinctorial textile colorant using an isolated bacterial strain. J Environ Biol 37(6):1497–1506

    Google Scholar 

  • Kumar MA, Poonam S, Kumar VV et al (2017a) Mineralization of aromatic amines liberated during the degradation of a sulfonated textile colorant using Klebsiella pneumoniae strain AHM. Process Biochem 57:181–189

    Article  CAS  Google Scholar 

  • Kumar MA, Zamana PA, Kumar VV et al (2017b) Achromobacter xylosoxidans strain APZ for phthalocyanine dye degradation: Chemo-metric optimization and canonical correlation analyses. Journal of Water Process Engineering 18:73–82

    Article  Google Scholar 

  • Kumar MA, Vigneshwaran ME, Priya M (2017c) Concocted bacterial consortium for the detoxification and mineralization of azoic-cum-sulfonic textile mill effluent. J Water Process Eng 16C:199–205

    Google Scholar 

  • Lade H, Kadam A, Paul D et al (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/ aerobic processes. EXCLI J 14:158–174

    Google Scholar 

  • Lalnunhlimi S, Krishnaswamy V (2016) Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Braz J Microbiol 47(1):39–46

    Article  CAS  Google Scholar 

  • Mahmood R, Sharif F, Ali S et al (2015) Enhancing the decolorizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on seed germination. Sci World J 2015:628195

    Article  Google Scholar 

  • Mahmood S, Khalid A, Arshad M et al (2016) Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol 36(4):639–651

    CAS  Google Scholar 

  • Mane UV, Gurav PN, Deshmukh AM et al (2008) Degradation of textile dye reactive navy-blue Rx (Reactive blue-59) by an isolated actinomycete Streptomyces krainskii SUK-5. Malays J Microbiol 4(2):1–5

    Google Scholar 

  • Mishra AK (2016) Smart materials for waste water applications. Scrivener Publishing, Wiley, New Jersey

    Google Scholar 

  • Mohana S, Shrivastava S, Divecha J et al (2008) Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Biores Technol 99(3):562–569

    Article  CAS  Google Scholar 

  • Mohanty S, Dafale N, Rao NN (2006) Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge. Biodegradation 17(5):403–413

    Article  CAS  Google Scholar 

  • Mohanty J, Shinde MN, Barooah N et al (2016) Reversible insulin hexamer assembly promoted by ethyl violet: pH-controlled uptake and release. J Phys Chem Lett 7(19):3978–3983

    Article  CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21(5):667–672

    Article  CAS  Google Scholar 

  • Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigm 74(3):723–729

    Article  CAS  Google Scholar 

  • Moradeeya P, Kumar MA, Thorat RB et al (2017) Screening of nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24:1319–1332

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegradation 59(2):73–84

    Article  CAS  Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A et al (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Biores Technol 102(1):118–122

    Article  CAS  Google Scholar 

  • Peters AT, Freeman HS (1991) Colour chemistry: the design and synthesis of organic dyes and pigments. Elsevier Applied Science. Elsevier Science Pub, New York

    Google Scholar 

  • Phugare SS, Kalyani DC, Patil AV et al (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186(1):713–723

    Article  CAS  Google Scholar 

  • Rajeswari K, Subashkumar R, Vijayaraman K (2011) Biodegradation of mixed textile dyes by bacterial strains isolated from dyewaste effluent. Res J Environ Toxicol 5:97–107

    Article  CAS  Google Scholar 

  • Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Sakthipriya N, Doble M, Sangwai JS (2016) Efficacy of Bacillus subtilis for the biodegradation and viscosity reduction of waxy crude oil for enhanced oil recovery from mature reservoirs. Energy Sources, Part A: Recovery, Utilization Environ Eff 38(16):2327–2335

    Article  CAS  Google Scholar 

  • Salabert J, Sebastián RM, Vallribera A (2015) Anthraquinone dyes for superhydrophobic cotton. Chem Commun 51(75):14251–14254

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC et al (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Biores Technol 100(9):2493–2500

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS et al (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21(6):999–1015

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS et al (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    Article  CAS  Google Scholar 

  • Sathya DJH, Turakhia AM, Kumar MA et al (2017) Bioethanol from saccharificed lignocellulosic rich Aloe vera rinds using Saccharomyces cerevisiae MTCC 4779. Energy Sources, Part A: Recovery, Utilization, Environ Eff. doi:https://doi.org/10.1080/15567036.2017.1328004

  • Seenuvasan M, Malar GCG, Preethi S et al (2013) Fabrication, characterization and application of pectin degrading Fe3O4–SiO2 nanobiocatalyst. Mater Sci Eng, C 33:2273–2279

    Article  CAS  Google Scholar 

  • Seenuvasan M, Kumar KS, Malar GCG et al (2014) Characterization, analysis, and application of fabricated Fe3O4-chitosan-pectinase nanobiocatalyst. Appl Biochem Biotechnol 172(5):2706–2719

    Article  CAS  Google Scholar 

  • Seenuvasan M, Sanjayini SJ, Kumar MA et al (2017) Cellulase mediated saccharification of lignocellulosic rich pseudostem of Musa cavendish for bio-ethanol production by Saccharomyces cerevisiae MTCC 4779. Energy Sources, Part A: Recovery, Utilization, Environ Eff 39(6):570–575

    Article  CAS  Google Scholar 

  • Sen SK, Raut S, Bandyopadhyay P et al (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  • Shah MP (2014) Microbial degradation of acid blue dye by mixed consortium. Int J Environ Bioremediat Biodegradation 2(3):125–132

    Google Scholar 

  • Shah M (2016) Microbial degradation of Reactive Orange M2R dye by bacterial consortium ETL-A. J Microb Biochem Technol 8(6):483–487

    Google Scholar 

  • Tamboli DP, Gomare SS, Kalme SS et al (2010) Degradation of Orange 3R, mixture of dyes and textile effluent and production of polyhydroxyalkanoates from biomass obtained after degradation. Int Biodeterior Biodegradation 64(8):755–763

    Article  CAS  Google Scholar 

  • Tony BD, Goyal D, Khanna S (2009a) Decolorization of textile azo dyes by aerobic bacterial consortium. Int Biodeterior Biodegradation 63(4):462–469

    Article  CAS  Google Scholar 

  • Tony BD, Goyal D, Khanna S (2009b) Decolorization of Direct Red 28 by mixed bacterial culture in an up-flow immobilized bioreactor. J Ind Microbiol Biotechnol 36(7):955–960

    Article  CAS  Google Scholar 

  • Vidhyadevi T, Murugesan A, Kalaivani SS et al (2014) Optimization of the process parameters for the removal of reactive yellow dye by the low cost Setaria verticillata carbon using response surface methodology: Thermodynamic, kinetic and equilibrium studies. Environ Progr Sustain Energy 33(3):855–865

    Article  CAS  Google Scholar 

  • Waghmode TR, Kurade MB, Lade HS et al (2012) Decolorization and biodegradation of Rubine GFL by microbial consortium GG-BL in sequential aerobic/microaerophilic process. Appl Biochem Biotechnol 167(6):1578–1594

    Article  CAS  Google Scholar 

  • Welham A (2000) The theory of dying (and the secret of life). J Soc Dyers Colour 116(5):140–143

    CAS  Google Scholar 

  • Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, Zurich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Sivanesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M.A., Baskaralingam, P., Aathika, A.R.S., Sivanesan, S. (2018). Role of Bacterial Consortia in Bioremediation of Textile Recalcitrant Compounds. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_8

Download citation

Publish with us

Policies and ethics