Skip to main content

Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production

  • Chapter
  • First Online:
Advances in Soil Microbiology: Recent Trends and Future Prospects

Abstract

Arbuscular mycorrhizal fungi (AMF) exhibit multifunctional mutualistic symbiosis between plants and members of phylum Glomeromycota. This bipartite association improves uptake of water and nutrients such as phosphate, nitrogen, and micronutrients and also protects the plants from abiotic and biotic stresses. The trade-offs between plant colonization by AMF are controlled by physiological and/or genetic drivers in nature. The plant signal, different subsets of its genes, and a diffusible fungal signaling factor that triggers gene activation support the progress of AMF infection in successive root cell layers. The molecular understanding of AMF association in plants particularly in rice is very important to select an efficient and right species to reap the full beneficial effects from these fungi. The potential of AMF has been exploited vastly for most of the crop plants, but its role in sustaining rice cultivation is not much dissected, since there is a belief that these fungi may not work under lowland rice cultivation, which is one of the misconceptions. Rice is our staple food crop and demands huge amount of phosphorous (P), nitrogen (N), etc. In order to overcome the future P crisis and mitigate drought for sustainable rice cultivation, AMF can be appreciated as a “savior for rice” irrespective of different cultivations. In the above perspective, the present chapter discusses about the potentiality of AMF for rice cultivation and also confers the molecular insight and future perspective of this fungal association for sustainable rice production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Sci 33:389–408

    Article  Google Scholar 

  • Abbott LK, Robson AD, Deboer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Abdul-Wasea AA, Elhindi KM (2010) Alleviation of drought stress of marigold plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18:93–98

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GM (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374

    Article  CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  CAS  PubMed  Google Scholar 

  • Ashoub MA, Esmail AM, Shaalan SN, Osman AM (1993) Response of rice plant to mineral nitrogen and biofertilization. Ann Agric Sci 38(1):139–148

    Google Scholar 

  • Auge RM, Schekel KA, Wample RL (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99:291–302

    Article  CAS  Google Scholar 

  • Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khanf MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Chapter  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soilborne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:57–464

    Google Scholar 

  • Baby UI, Manibhushanrao K (1996) Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease. Mycorrhiza 6(3):201–206

    Article  Google Scholar 

  • Bagyaraj DJ, Menge JA (1978) Interaction between a VA-mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol 80:567–573

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43(4):810–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aquiller C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grosch R, Scherwinski K (2007) Risk assessment for microbial antagonists and their effects on nontarget organisms. Gesunde Pflanzen 59:107–117

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Barea JM (1994) Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation. Am J Altern Agric 9(4):157–161

    Article  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017. https://doi.org/10.1111/j.1365-313X.2010.04385.x

    Article  CAS  PubMed  Google Scholar 

  • Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514

    Article  Google Scholar 

  • Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ane JM, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180:311–315

    Article  CAS  PubMed  Google Scholar 

  • Ciccolini V, Ercoli L, Davison J, Vasar M, Öpik M, Pellegrino E (2016) Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland. FEMS Microbiol Ecol 92(12):186

    Article  CAS  Google Scholar 

  • Cordier C, Gianinazzi S, Giannazzi-Pearson V (1996) Colonization patterns of root tissues by Phytophthora nicotianae Var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:289–294

    Article  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dhillion SS (1992) Host-endophyte specificity of vesicular-arbuscular mycorrhizal colonization of Oryza sativa L. at the pre-transplant stage in low or high phosphorus soil. Soil Biol Biochem 24(5):405–411

    Article  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Filter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99:257–265

    Article  Google Scholar 

  • Gangopadhyay S, Das KM (1984) Interaction between vesicular-arbuscular mycorrhiza and rice roots. Indian Phytopathol 35:34–38

    Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when non mycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • George E, Hssuser KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonized with arbuscular mycorrhizal fungi. Can J Bot Revue Canadienne De Botanique 85:644–651

    CAS  Google Scholar 

  • Grosch R, Lottmann J, Faltin F, Berg G (2005) Use of bacterial antagonists to control diseases caused by Rhizoctonia solani. Gesunde Pflanzen 57:199–205

    Article  Google Scholar 

  • Gupta N, Ali SS (1993) VAM inoculation for wetland rice. Mycorrhiza News 5:5–6

    Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920

    Article  CAS  PubMed  Google Scholar 

  • Habte M, Fox RL (1993) Effectiveness of VAM fungi in nonsterile soils before and after optimization of P in soil solution. Plant Soil 151:219–226

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009a) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55(3):93–100

    CAS  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009b) Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agric Slov 93(2):153

    Article  Google Scholar 

  • Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassouna MG, Aboul-Nasr A (1992) Application of growth promoting rhizobacteria and vesicular arbuscular mycorrhizae on soybean (Glycine max) on the poor lands of N. W. Egypt. Commun Sci Dev Res 39:47–61

    Google Scholar 

  • Hepper CM, Warner A (1983) Role of organic matter in growth of a vesicular-arbuscular mycorrhizal fungus in soil. Trans Br Mycol Soc 81:155–156

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(2007):139–146

    Article  CAS  PubMed  Google Scholar 

  • Ho I (1993) Analysis of nutrient uptake by six species of vesicular-arbuscular mycorrhizal fungi in Zea mays. Indian J Mycol Plant Pathol 23:64–69

    CAS  Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of carbon from Festuca plants to their endomycorrhizal fungi. Nature 244:30–31

    Article  CAS  Google Scholar 

  • Hong JJ, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ (2012) Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta 236(3):851–865

    Article  CAS  PubMed  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 191–200

    Chapter  Google Scholar 

  • Ikram A, Mahmud AW, Ghani MN, Ibrahim MT, Zainal AB (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. Seedling rootstock with vesicular-arbuscular mycorrhizal fungi. Plant Soil 145:231–236

    Article  Google Scholar 

  • Ilag LL, Rosales AM, Elazegvi FV, Mew TW (1987) Changes in the population of infective endomycorrhizal fungi in a rice based cropping system. Plant Soil 103:67–73

    Article  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G-J, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  CAS  PubMed  Google Scholar 

  • Itao E, Ella E, Kawanto N (1999) Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crop Res 64:75–90

    Article  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364. https://doi.org/10.1073/pnas.0508883103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katyal JC, Vlek PLG (1985) Micronutrient problems in tropical Asia. Fertil Res 7:69–94

    Article  CAS  Google Scholar 

  • Kerni PN (1991) Nitrogen biofertilizers in rice, seed, seedling and soil application. Res Dev Rep 8(1):60–64. C.F. Soils and Fertilizers Abstracts 56, 759, 1993

    Google Scholar 

  • Koide R (1993) Physiology of the mycorrhizal plant. Adv Plant Pathol 9:33–54

    Google Scholar 

  • Kojima T, Saito M (2004) Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Mycol Res 108(06):610–615

    Article  CAS  PubMed  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 105:9823–9828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucey RM, Janzen HH (1987) Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant Soil 104(1):71–78

    Article  CAS  Google Scholar 

  • Kumar U, Panneerselvam P, Banik A, Annapurna K (2016) Lower frequency and diversity of antibiotic-producing fluorescent pseudomonads in rhizosphere of Indian rapeseed–mustard (Brassica juncea L. Czern.). In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, pp 1–8

    Google Scholar 

  • Laheurte F, Leyval I, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116

    Google Scholar 

  • Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36(11):1911–1915

    PubMed  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Dénarié J (2004) A putative Ca2R and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wu C, Ye ZH, Wu SC, Wu FY, Wong MH (2011) Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices. J Hazard Mater 194:414–421

    Article  CAS  PubMed  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Zhang X, Yang X (2014) Glomus mosseae enhances root growth and cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils. Ecotoxicology 23(10):2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47(7):807–817

    Article  CAS  PubMed  Google Scholar 

  • Maiti D (2015) improving phosphorus nutrition of upland Rice through native arbuscular mycorrhiza (AM). Rice Res Open Access 3(3):e115

    Google Scholar 

  • Maiti D, Barnwal MK, Rana SK, Variar M, Singh RK (2006) Enhancing native arbuscular mycorrhizal association to improve phosphorus nutrition of rainfed upland rice (Oryza sativa L.) through cropping systems. Indian Phytopathol 59:432–438

    Google Scholar 

  • Maiti D, Toppo NN, Variar M (2011) Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza 21(8):659–667

    Google Scholar 

  • Maiti D, Singh RK, Variar M (2012) Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.) Biol Fertil Soils 48(1):67–73

    Article  Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20(8):912–921

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function 2000. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2R/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohandas S, Panneerselvam P (2016) Arbuscular Mycorrhizal fungi in fruit crops production. Daya Publishing House, New Delhi, p 397

    Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42(2):236–250

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69(5):2816–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Panneerselvam P, Saritha B (2017) Influence of AM fungi and its associated bacteria on growth promotion and nutrient acquisition in grafted sapota seedling production. J Appl Nat Sci 9(1):621–625

    Google Scholar 

  • Panneerselvam P, Thangaraju M, Jayarama (2006) Induction of defense mechanisms in Coffea arabica L. by native rhizobacterial isolates against coffee leaf rust (Hemileia vastatrix) disease. Trop Agric Res 18:173–181

    Google Scholar 

  • Panneerselvam P, Saritha B, Mohandas S, Upreti KK, Poovarasan S, Sulladmath VV, Venugopalan R (2013) Effect of mycorrhiza-associated bacteria on enhancing colonization and sporulation of Glomus mosseae and growth promotion in sapota (Manilkara achras (mill) Forsberg) seedlings. Biol Agric Hortic 29(2):118–131

    Article  Google Scholar 

  • Panneerselvam P, Anushree PM, Kumar U, Anandan A, Paramesswaran C, Anjani Kumar, Nayak AK (2016a) Studies on host preference of AM fungi in different aerobic rice varieties under elevated carbon dioxide condition. In: 57th annual conference of association of Microbiologist of India and International symposium on Microbes and Biosphere: what’s New What’s next, November 24–27, 2016, Gauhati University, Assam

    Google Scholar 

  • Panneerselvam P, Kumar U, Saha S, Adak T, Munda S (2016b) Effect of Bis-pyribac sodium on arbuscular mycorrhizal (AM) fungal association in rice. NRRI Newsl 37(1):18

    Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7(4):414–421

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterso RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Pfeffer P, Douds D, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120(2):587–598. https://doi.org/10.1104/pp.120.2.587. PMC 59298. PMID 10364411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):1–12

    Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus etunicatum L.) on mobilization of zinc in wetland rice (Oryza sativa L.) Biol Fertil Soils 33:323–327

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Plant Physiol 98:767–722

    Article  CAS  Google Scholar 

  • Ruíz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167(11):862–869

    Article  PubMed  CAS  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19(2):610–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saritha B, Panneerselvam P, Mohandas S, Sulladmath VV, Ravindrababu P (2014) Studies on host preference of Glomus sp and their synergistic effect on sapota (Manilkara achras (mill) Forsberg) seedlings growth. Plant Arch 14(2):701–706

    Google Scholar 

  • Saritha B, Panneerselvam P, Ganeshamurthy AN (2015) Antagonistic potential of mycorrhiza associated Pseudomonas putida against soilborne fungal pathogens. Plant Arch 15(2):763–768

    Google Scholar 

  • Sathyarahini K, Panneerselvam P, Ganeshamurthy AN (2015) Studies on relationship between total glomalin and soil aggregates in perennial fruit crop orchards. Int J Appl Pure Sci Agric 1(7):47–52

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1992) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice (Oryza sativa L.) Biol Fertil Soils 13(2):108–111

    Article  Google Scholar 

  • Secilia J, Bagyaraj DJ (1994a) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice – a preliminary screen. Mycorrhiza 4(6):265–268

    Article  Google Scholar 

  • Secilia J, Bagyaraj DJ (1994b) Evaluation and first-year field testing of efficient vesicular arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings. World J Microbiol Biotechnol 10(4):381–384

    Article  CAS  PubMed  Google Scholar 

  • Sharma MP, Gupta S, Sharma SK, Vyas AK (2012) Effect of tillage and crop sequences on arbuscular mycorrhizal symbiosis and soil enzyme activities in soybean (Glycine max L. Merril) rhizosphere. Indian J Agric Sci 82:25–30

    CAS  Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, London, p 605

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114(1):1–38

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobson I (2003) Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41(3):505–514

    Article  Google Scholar 

  • Solaiman MZ, Hirata H (1996) Effectiveness of arbuscular mycorrhizal colonization at nursery–stage on growth and nutrition in wetland rice (Oryza sativa L.) after transplanting under different soil fertility and water regimes. Soil Sci Plant Nutr 42:56–571

    Article  Google Scholar 

  • Solaiman MZ, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191(1):1–12

    Article  CAS  Google Scholar 

  • Solaiman MZ, Hirata H (1998) Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions. Biol Fertil Soils 27:92–96

    Article  Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterization of mycorrhizas formed by Glomus sp. on root of hypernodulating mutants of Lotus japonicus. J Plant Res 113:443–448

    Article  Google Scholar 

  • Sahoo S, Panneerselvam P, Chowdhury T, Kumar A, Kumar U, Afrin J, Ansuman S, Anandan A (2017) Understanding the AM fungal association in flooded rice under elevated CO2 condition. Oryza 54(3):290–297

    Google Scholar 

  • Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci U S A 98:15366–15371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Arnaud M, Hamel C, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Plant Pathol 16:187–194

    Article  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y, Kobae Y, Mizuno T, Hata S (2012) Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci Biotechnol Biochem 76:309–313

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyposphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Thompson JP (1996) Correction of dual phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultivars of vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 28:941–951

    Article  CAS  Google Scholar 

  • Trotta A, Vanese GC, Gnavi E, Fascon A, Sampo S, Berta G (1996) Interaction between the soilborne root pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plant. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E (2009) Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol 154(2):195–204

    Article  Google Scholar 

  • Wang C, Gu Z, Cui H, Zhu H, Fu S, Yao Q (2015) Differences in arbuscular mycorrhizal fungal community composition in soils of three land use types in subtropical hilly area of southern China. PLoS One 10(6):e0130983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354

    Article  Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JP, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28(3):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellings NP, Wearing AH, Thompson JP (1991) Vesicular-arbuscular mycorrhizae (VAM) improve phosphorus and zinc nutrition and growth of pigeon pea in a vertisol. Aust J Agric Res 42:835–845

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M (2013) Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci 4:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107. https://doi.org/10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  • Wu F, Hu J, Wu S, Wong MH (2015) Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in as-spiked soils. Environ Sci Pollut Res Int 22(12):8919–8926

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198(3):836–852

    Article  CAS  PubMed  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza enhanced expression. J Exp Bot 58:249–501

    Google Scholar 

  • Yanni YG, Zidan MI, Shalan SN (1984) Effect of inoculation with blue-green algae, source and rates of combined nitrogen on plant growth, grain yield and nitrogen content in rice plant (Oryza sativa), Giza 172 (Egypt). In: General Conference of Agricultural Research Centre, Giza, Egypt

    Google Scholar 

  • Yao MK, Tweddell RJ, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Zhu YG, Lin AJ, Chen BD, Smith SE, Smith FA (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64(10):1627–1632

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41(5):930–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Panneerselvam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panneerselvam, P. et al. (2017). Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production. In: Adhya, T., Mishra, B., Annapurna, K., Verma, D., Kumar, U. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-7380-9_6

Download citation

Publish with us

Policies and ethics