Skip to main content

Phosphate-Solubilizing Microorganisms in Sustainable Agriculture: Genetic Mechanism and Application

  • Chapter
  • First Online:
Book cover Advances in Soil Microbiology: Recent Trends and Future Prospects

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 4))

Abstract

Phosphorus (P) is the second important nutrient in terms of plant requirement and uptake. Though it is present in the soil in both organic and inorganic forms, its accessibility is constrained as it occurs mostly in insoluble forms. Additional requirement of P to satisfy nutritional requirements of the crop is usually supplemented as chemical P fertilizer. A number of soil microorganisms named phosphate-solubilizing microorganisms (PSMs) have been tested for solubilizing/mineralizing insoluble soil P, releasing in soluble form and making it available for plant uptake. PSMs are environment-friendly and deliver P to plants in a more sustainable manner. The present chapter focuses on the biochemical, molecular, and genetic mechanisms of P release by different PSMs. Phosphorus solubilization through diffusion of strong organic acids produced in the periplasm of the organism, into the adjacent soil environment, is one of the important mechanisms for P solubilization and is genetically controlled. The use of PSM is a promising approach to develop and fulfill P demand of the growing crop without causing any environmental hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhya TK, Kumar N, Reddy G, Podile RA, Bee H, Samantaray B (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Special section: sustainable phosphorus management. Curr Sci 108(7):1280–1287

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Anthony OA, Kloepper JW (2009) Appl Microbiol Biotechnol 85:1–12

    Article  Google Scholar 

  • Atlas R, Bartha R (1997) Microbial ecology. Addison Wesley Longman, New York

    Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Beech IB, Paiva M, Caus M, Coutinho C (2001) Enzymatic activity and within biofilms of sulphate-reducing bacteria. In: Gilbert PG, Allison D, Brading M, Verran J, Walker J (eds) Biofilm community interactions: change or necessity? Boiline, Cardiff, pp 231–239

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology: individuals, populations and communities, 2nd edn. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Article  Google Scholar 

  • Bhargava T, Datta S, Ramachandran V, Ramakrishnan R, Roy RK, Sankaran K, Subrahmanyam YVBK (1995) Virulent Shigella codes for a soluble apyrase: identification, characterization and cloning of the gene. Curr Sci 68:293–300

    CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting Rhizobacteria PGPR: emergence in agriculture. J World Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bishop ML, Chang AC, Lee RWK (1994) Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157:238–243

    Article  CAS  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:117–124

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Daniel P, Schachtman RJR, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  Google Scholar 

  • De Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228

    Article  Google Scholar 

  • Elizabeth T, Alori GBR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00971

  • Fankem H, Nwaga D, Deube A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotechnol 5:2450–2460

    CAS  Google Scholar 

  • FAOSTAT (2012) http://faostat.fao.org/site/575/default.aspx#ancor. Last access date 02/05/2012

  • Fraga R, Rodriguez H, Gonzalez T (2001) Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369

    Article  CAS  Google Scholar 

  • Furihata T, Suzuki M, Sakuri H (1992) Kinetic characterization of two phosphate uptake systems with different affinities in suspension cultured Catharan roseus protoplasts. Plant Cell Physiol 33:1151–1157

    CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publisher, New Delhi, p 176

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  • Goldstein AH (1996) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    CAS  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Mining by microbe. Biotechnology 11:1250–1254

    CAS  Google Scholar 

  • Goosen N, Horsman HPA, Huinen RG, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline- quinine: nucleotide sequence and expression in Escherichia coli k-12. J Bacteriol 171:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Houck DR, Hanners JL, Unkefer CJ (1991) Biosynthesis of pyrroloquinoline quinone. Biosynthetic assembly from glutamate and tyrosine. J Am Chem Soc 113:3162–3166

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowitz RM (1989) Free living bacteria inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kucey RMN, Janzen HH, Legett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:198–228

    Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Sanjeev A (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Liu TS, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • McGrath JW, Wisdom GB, McMullan G, Larkin MJ, Quinn JP (1995) The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 234:225–230

    Article  CAS  PubMed  Google Scholar 

  • Meulenberg JJM, Sellink E, Loenen WAM (1990) Cloning of Klebsiella Pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett 71:337–343

    Article  CAS  Google Scholar 

  • Meulenberg JJ, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294

    CAS  PubMed  Google Scholar 

  • Mohammad SK, Zaidi A, Parvaze AW (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27(1):29–43. Springer

    Article  Google Scholar 

  • Morris CJ, Biville F, Turlin E, Lee E, Ellermann K, Fan WH, Ramamoorthi R, Springer AL, Lidstrom ME (1994) Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. J Bacteriol 176(6):1746–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motsara MR (2002) Phosphorus fertility status of soils in India. Fertil News 47:15–21

    Google Scholar 

  • Muralidharudu Y, Reddy SK, Mandal BN, Rao SA, Singh KN, Sonekar S (2011) GIS based soil fertility maps of different states of India. AICRP-STCR, IISS, Bhopal, p 224

    Google Scholar 

  • Nozawa M, HY H, Fujie K, Tanaka H, Urano K (1998) Quantitative detection of Enterobacter cloacae strain HO-I in bioreactor for chromate wastewater treatment using polymerase chain reaction [PCR]. Water Resour Manag 32:3472–3476

    CAS  Google Scholar 

  • Ohtake H, Wu H, Imazu K, Anbe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Res Cons Recy 18:125–134

    Article  Google Scholar 

  • Oliveira CA, Sa NMH, Gomes EA, Marriel IE, Scotti MR, Guimaraes CT, Schaffert RE, Alves VMC (2009) Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Appl Soil Ecol 41:249–258

    Article  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–219

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1988) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Pradhan A, Baisakh B, Mishra BB (2014) Plant growth characteristics of bacteria isolated from rhizosphere region of Santalum album. J Pure Appl Microbiol 8(6):4775–4781

    Google Scholar 

  • Ramamurthy B, Bajaj JC (1969) Available nitrogen, phosphorus and potassium status of Indian soils. Fertil News 14:25–36

    Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota, management in sustainable farming systems. CSIRO, Melbourne, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rosenberg H (1987) Phosphate transport in prokaryotes. In: Rosen B, Silver S (eds) Ion transport in prokaryotes. Academic, San Diego, pp 205–248

    Chapter  Google Scholar 

  • Ross HM (2013) Phosphorus fertilizer application in crop production Agri-facts. Practical information for Alberta’s agriculture industry, pp 1–12

    Google Scholar 

  • Saber K, Nahla LD, Chedly A (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    Article  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Santos-Beneit (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Scervino JM, Mesa MP, Mo’nica ID, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28(2):749–2758

    Article  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerophosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Sperber JI (1958a) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Sperber JI (1958b) Solubilization of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9:782–787

    Article  CAS  Google Scholar 

  • Stevenson EJ (1986) Cycles of soil. Wiley, New York

    Google Scholar 

  • Taha SM, Mahmoud SAZ, El-Damaty AA, Abd El- Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soil. Plant Soil 31:149

    Article  Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995) Heterogeneous patterns of acid phosphatases containing low-molecular-mass Polypeptides in members of the family Enterobacteriaceae. Int J Syst Evol Microbiol 4:255–261

    Google Scholar 

  • Tilak KVBR, Ranganayaki NL, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136

    CAS  Google Scholar 

  • Tirado R, Allsoapp M (2012) Phosphorus in agriculture problems and solutions greenpeace research laboratory. Springer, Amsterdem

    Google Scholar 

  • Toro M (2007) Phosphate solubilizing microorganisms in the rhizosphere of native plants from tropical savannas: an adaptive strategy to acid soils? In: Velazquez C, Rodriguez-Barrueco E (eds) Developments in plant and soil sciences. Springer, Dordrecht, pp 249–252

    Google Scholar 

  • Torriani-Gorini A (1994) Regulation of phosphate metabolism and transport. In: Torriani A, Gorini EY, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 1–4

    Google Scholar 

  • Van Schie BJ, Hellingwerf KJ, van Dijken JP, Elferink MGL, van Dijl JM, Kuenen JG, Konigns WN (1987) Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas putida, and Acinetobacter calcoaceticus (var. lwoffii). J Bacteriol 163:493–499

    Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Article  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exo-polysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009a) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009b) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 23–50

    Chapter  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti Bhusan Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, A., Pahari, A., Mohapatra, S., Mishra, B.B. (2017). Phosphate-Solubilizing Microorganisms in Sustainable Agriculture: Genetic Mechanism and Application. In: Adhya, T., Mishra, B., Annapurna, K., Verma, D., Kumar, U. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-7380-9_5

Download citation

Publish with us

Policies and ethics