Skip to main content

Stress-Tolerant Beneficial Microbes for Sustainable Agricultural Production

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 7))

Abstract

Agriculture sector is a major contributor of national income in India, while ensuring food security and employment. Plant exposure to both biotic and abiotic stresses causes major losses to agricultural production worldwide. Biotic factors mainly include interaction with other pathogenic or parasitic microorganisms and insect pests, whereas abiotic factors include temperature, drought, water logging, and salinity. Microorganisms play an important role in the growth and development of plants. They confer several benefits to the plants and help them to alleviate the stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350

    Article  CAS  Google Scholar 

  • Ali SKZ, Sandhya V, Grover M, Kishore N, Venkateswar Rao L, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:4555

    Article  CAS  Google Scholar 

  • Ali SKZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermo tolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246

    Article  CAS  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015a) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali S, Ehetshamul-Haque S, Shahid Shaukat S (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149(6):337–346

    Google Scholar 

  • Ali Z, Ullah N, Naseem S, Inam-Ulhuaq M, Jacobsen HJ (2015b) Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter. Turk J Bot 39:962–972

    Article  CAS  Google Scholar 

  • Allen TD, Eby LT, Poteet ML, Lentz E, Lima L (2004) Career benefits associated with mentoring for proteges: a meta-analysis. J Appl Psychol 89(1):127–136

    Google Scholar 

  • Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Plant Soil 230(1):87–97

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barriuso J, Solano BR, Gutierrez Manero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672. https://doi.org/10.1094/PHYTO-98-6-0666

    Article  CAS  PubMed  Google Scholar 

  • Bergottini VM, Otegui MB, Sosa DA, Zapata PD, Mulot M, Rebord M, Junier P (2015) Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield. Biol Fertil Soils 51(6):749–755

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern- recognition receptors. Annu Rev Plant Biol 60(1):379–406

    Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought- from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen M et al (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:7–30. https://doi.org/10.1007/s10584-006- 9210-7

    Article  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry A-A, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511

    Article  PubMed  CAS  Google Scholar 

  • Corretto E, Antonielli L, Sessitsch A, Compant S, Höfer C, Puschenreiter M, Brader G (2017) Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33T and comparison with related Actinobacteria. Stand Gen Sci. https://doi.org/10.1186/s40793-016-0217-z

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:228–273

    Article  Google Scholar 

  • Dar GH, Beig MA, Ahanger FA, Ganai NA, Ashraf Ahangar M (2011) Management of root rot caused by Rhizoctonia solani and Fusarium oxysporum in blue pine (Pinus wallichiana) through use of fungal antagonists. Asian J Plant Pathol 5:62–74

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dhawia F, Dattaa R, Ramakrishna W (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42(1):185–209

    Google Scholar 

  • Dutta S, Mishra AK, Kuma BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 756120:18

    Google Scholar 

  • Emerson R, Hoover A, Ray A, Lacey J, Cortez M, Payne C et al (2014) Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5(3):275–291

    Article  CAS  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gahan LJ, Pauchet Y, Vogel H, Heckel DG, Mauricio R (2010) An ABC transporter mutation is correlated with insect resistance to bacillus thuringiensis Cry1Ac Toxin. PLoS Genet 6(12):e1001248

    Google Scholar 

  • Ghabrial SA, Nibert ML (2009) Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch Virol 154:373–379

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications, Scientifica, vol. 2012, Article ID 963401, 1–15

    Google Scholar 

  • Glick BR et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Grennan AK (2008) Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146(4):1457–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soil 35:295–301

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160(4):385–388

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Md Saud H (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 6284547:10

    Google Scholar 

  • Haggag WM (2002) Sustainable agriculture management of plant diseases. J Biol Sci 2:280–284

    Article  Google Scholar 

  • Ham JH, Groth D (2011) Bacterial panicle blight, an emerging rice disease. Louisiana Agric 2011:16–17

    Google Scholar 

  • Han Q-Q, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525

    PubMed  PubMed Central  Google Scholar 

  • Hasiów-Jaroszewska B, Minicka J, Pospieszny H (2014) Cross-protection between different Pathotypes of Pepino mosaic virus representing Chilean 2 genotype. Acta Sci Pol, Hortorum Cultus 13(5):177–185

    Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestation in New York. Crop Prot 27:996–1002

    Article  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM (2010) How rhizobia survive in the absence of a legume host, a stressful world indeed. In: Symbiosis and stress: joint ventures in biology (Eds.) J. Seckbach, M. Grube. cellular origin, life in extreme habitats and astrobiology. 17(4):375–391Dordrecht: Springer

    Chapter  Google Scholar 

  • Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant toxicology. Marcel Dekker Inc., New York, pp 91–224

    Google Scholar 

  • Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84

    Article  Google Scholar 

  • Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Severson TF, Kang K, Hammock BD (2001) Recombinant baculoviruses for insect control. Pest Manag Sci 57:981–987

    Article  CAS  PubMed  Google Scholar 

  • Ings J, Mur LAJ, Robson PRH, Bosch M (2013) Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Front Plant Sci 4:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, BAli HS, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Jehle JA, Schulze-Bopp S, Undorf-Spahn K, Fritsch E (2017) Evidence for a second type of resistance against cydia pomonella granulovirus in field populations of codling moths. Appl Environ Microbiol 83(2):e02330

    Article  PubMed  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515

    CAS  PubMed  Google Scholar 

  • Karlidag H, Esitken A, Yildirim EMF, Turan MD (2011) Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J Plant Nutr 34:34–45

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:1–6

    Google Scholar 

  • Khan M, Goel R (2014) Expression, purification and in silico studies of cold resistant protein from plant growth promoting Ps fluorescens mutant CRPF1. Curr Biotechnol 3(3):266–272. https://doi.org/10.2174/ 221155010303140918120113

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kosaka Y, Ryang B-S, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006) Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90:67–72

    Article  CAS  Google Scholar 

  • Kumar GP, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In Vitro screening for sbioticd tress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:195946

    Google Scholar 

  • Lamsal K, Kim SW, Kim YS, Lee YS (2012) Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by on pepper. Mycobiology 40(4):244

    Google Scholar 

  • Lee G-W, Kim M-J, Park J-S, Chae J-C, Soh B-Y, Jae-Eun J, Lee K-J (2011) Biological control of phytophthora blight and anthracnose disease in red-pepper using bacillus subtilis S54. Res Plant Dis 17(1):86–89

    Google Scholar 

  • Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Pang HD, He LY, Wang Q, Sheng XF (2017) Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicol Environ Saf 138:56–63

    Article  CAS  PubMed  Google Scholar 

  • Lim J-H, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheni formis K11 in pepper. Plant Pathol J 29(2):201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56(3):221–230

    Article  CAS  PubMed  Google Scholar 

  • Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Mañero FJ (2004) Effect of inoculation of Bacillus licheniformis ontomato and pepper. Agronomie 24:169–176

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1- carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. AJCS 8(2):208–214

    Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. https://doi.org/10.1016/j.plaphy.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mohanty M, Patra HK (2013) Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. var k-851) during seedling growth. J Stress Physiol Biochem 9(2):232–241

    Google Scholar 

  • Murphy JF, Zender GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nag NK (2015) Selection of stress tolerant effective azotobacter isolates for climatic conditions of Chhattisgarh. M.Sc. (Ag) thesis submitted in Indiragandhi Krishi Vishwavidyalaya Raipur

    Google Scholar 

  • Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE, Clark CA et al (2009) Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis 93(9):896–905

    Article  CAS  Google Scholar 

  • Nehra K, Yadav AS, Sehrawat AR, Vashishat RK (2007) Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian J Microbiol 47:329–335

    Article  CAS  PubMed  Google Scholar 

  • Nichols VA, Miguez FE, Jarchow ME, Liebman MZ, Dien BS (2014) Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy. Bioenergy Res 7(4):1550–1560

    Article  CAS  Google Scholar 

  • Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by ralstonia solanacearum. Microbes Environ 30(1):1–11

    Google Scholar 

  • Ogai R, Kanda-Hojo A, Tsuda S (2013) An attenuated isolate of Pepper mild mottle virus for cross protection of cultivated green pepper (Capsicum annuum L.) carrying the L3 resistance gene. Crop Prot 54:29–34

    Article  CAS  Google Scholar 

  • Omar AM, AhmedI. S. Ahmed (2014) Antagonistic and inhibitory effect of some plant rhizo-bacteria against different fusarium isolates on salvia officinalis. Am Eurasian J Agric Environ Sci 14(12):1437–1446

    Google Scholar 

  • Ozaktan H, Erdal M, Akkopru A, Aslan E (2012) Biological control of bacterial blight of walnut by antagonistic bacteria. J Plant Pathol 94(1, Supplement):S1.53–S1.56

    Google Scholar 

  • Okazaki Y, Ishihara A, Nishioka T, Iwamura H (2004) Identification of a dehydrodimer of avenanthramide phytoalexin in oats. Tetrahedron 60(22):4765–4771

    Google Scholar 

  • Pal KP, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr. https://doi.org/10.1094/PHI-2006-117-02

  • Pan XD, Wu PG, Jiang XJ (2016) Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci Rep 6:20317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria which induces systemic resistance in tobacco against Pseudomonas syringae pv. Tabaco Biol Cont 18:2–9

    Article  CAS  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–384. https://doi.org/10.1002/jobm. 200700365

    Article  CAS  PubMed  Google Scholar 

  • Pereyra MA, García P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    Article  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Google Scholar 

  • Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2016) Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci Biotech Res Comm 9(3):530–538

    Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitat. SpringerPlus 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot 37:35–41

    Article  Google Scholar 

  • Rani A, Goel R (2009) Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 85–104

    Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78

    Google Scholar 

  • Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of pseudomonas putida 710A and commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rincon A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28(11):1693–1701

    Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen. Annu Rev Phytopathol 43(1):395–436

    Google Scholar 

  • Ron EZ, Segal G, Sirkis R, Robinson M, Graur D (2000) Regulation of heat-shock response in bacteria. Microbial biosystems: new frontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (eds) Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 359–374

    Google Scholar 

  • Ryu CM, Farag MA, CH H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabi-dopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadik S, Mazouz H, Bouaichi A, Benbouazza A, Achbani EH (2013) Biological control of bacterial onion diseases using a bacterium, Pantoea Agglomerans 2066-7. Int J Sci Res (IJSR) 4(1):2319–7064

    Google Scholar 

  • Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biom Res 1(4):421–431

    Google Scholar 

  • Saluja B, Gupta A, Goel R (2011) Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and ground water sources of India. Ekologija 57(41):55–161

    Google Scholar 

  • Saluja B, Tripathi M, Goel R (2012) Molecular and functional characterization of cadmium resistant Proteus vulgaris strain KNP3 to unravel its resistance mechanistic. Chem Ecol 8(1):17–23

    Article  CAS  Google Scholar 

  • Santiagoa TR, Grabowskib C, Rossatoa M, Romeiroa RS, Mizubuti ESG (2015) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22

    Article  Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, Khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As J Food Ag-Ind, special issue S69–S74

    Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63(4):1353–1362

    Article  CAS  Google Scholar 

  • Serrano R, Rodríguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  CAS  PubMed  Google Scholar 

  • Shahriari F, Khodakaramian G, Heydari A (2005) Assessment of antagonistic activity of Pseudomonas fluorescens biovars toward Pectobacterium carotovorum subsp. atrosepticum. J Sci Technol Agric Nat Resour 8:201–211

    Google Scholar 

  • Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B (2015) Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio 6(5):e00621-15. https://doi.org/10.1128/mBio.00621-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    Google Scholar 

  • Shi H, Quintero FJ, Prado JM, Zhu JK (2002) The putative plasma membrane Na+-H+ antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH (2016) Biological control activities of rice-associated bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One 11(1):e0146764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-Adapted Enzymes. Annu Rev Biochem 75(1):403–433

    Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14(1-2):155–166

    Google Scholar 

  • Singh AV, Chandra R, Goel R (2013) Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Arch Agron Soil Sci 59(5):641–651

    Article  CAS  Google Scholar 

  • Sinha S, Singh D, Yadav DK, Upadhyay BK (2012) Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstoniasolanacearum race 1 biovar 3. Indian Phytopathol 65(1):18–24

    Google Scholar 

  • Soni R, Saluja B, Goel R (2010) Bacterial community analysis using temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA PCR products of soil metagenome. Ekologija 56(3–4):94–98; Saluja B, Gupta A, Goel R (2011) Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and ground water sources of India. Ekologija 57(4):155–161

    Google Scholar 

  • Soni R, Suyal DC, Agrawal K, Yadav A, Souche Y, Goel R (2015) Differential proteomic analysis of Himalayan psychrotolerant diazotroph Pseudomonas palleroniana N26 strain under low temperature diazotrophic conditions. CryoLetters 36:74–82

    Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco M d C, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21(7):958–966

    Article  PubMed  CAS  Google Scholar 

  • Sunarpi HT, Motoda J, Kubo M et al (2005) Enhanced salt tolerance mediated byAtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Suprapta DN (2012) Potential of Microbial antagonists as biocontrol agents against plant fungal pathogens. J ISSAAS 18(2):1–8

    Google Scholar 

  • Suyal DC, Shukla A, Goel R (2014a) Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against Native Vigna radiata (L.) Wilczek. 3Biotech 4:665–668. https://doi.org/10.1007/s13205-014-0259-0

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014b) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550. https://doi.org/10.1007/s00284-013-0508-1

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015a) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313. https://doi.org/10.1515/biolog-2015-0048

    Article  CAS  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015b) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.) 3Biotech 5:433–441. https://doi.org/10.1007/s13205-014-0238-5

    Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  PubMed  CAS  Google Scholar 

  • Taj ZZ, Rajkumar M (2016) Perspectives of plant growth-promoting actinomycetes in heavy metal phytoremediation. In: Subramaniam G, Arumugam S, Rajendran V (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 213–231

    Google Scholar 

  • terHorst CP, Lennon JT, Lau JA (2014) The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc R Soc B 281:20140028

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Elna S¨m, lo Niinemets Ãœ (2014) drought-tolerance of wheat Improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant pseudomonas putida KNP9. Curr Microbiol 50(5):233–237

    Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56(2):140–144

    Google Scholar 

  • Turnera BL, Driessena JP, Haygarthb PM, Mckelvi ID (2003) Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189

    Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacvteria isolated from rhizosphere soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free living plant growth promoting Rhizobacteria. Ind J Sci Res 3(2):73–78

    CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Choudhary DK, Sharma KP (2016) Molecular characterization of potential salt tolerant bacteria for soybean growth promotion. Int J Bioassays 5(12):5118–5123

    Article  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607

    Google Scholar 

  • Vander Weijde T, Huxley LM, Hawkins S, Sembiring EH, Farrar K, Dolstra O et al (2016) Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy. https://doi.org/10.1111/gcbb.12382

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  • Velusamy P, Immanue JE, Gnanamanickam SS (2013) Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Sci 20(5):356–362

    Article  Google Scholar 

  • Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainino L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Article  Google Scholar 

  • Vidhyasekaran P (2002) Bacterial disease resistance in plants. Molecular biology and biotechnological applications. The Haworth Press, Binghamton. 452 pp

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wachowska U, Majchrzak B, Borawska M, Karpinska Z (2004) Biological control of winter wheat pathogens by bacteria. Acta fytotech zootech 7, 2004, special number. In: Proceedings of the XVI. Slovak and Czech plant protection conference organized at Slovak Agricultural University in Nitra, Slovakia

    Google Scholar 

  • Wafaa MHW, Hussein MM, Mehanna HM, El-Moneim D (2014) Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int J Pharm Sci Rev Res 29(2):292–298

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Wolter A, Schroeder F-G (2012) Effect of drought stress on the productivity of ivy treated with rhizobacterium Bacillus subtilis. In: Proceedings of the international symposium on soilless cultivation 1004, Shanghai, pp 107–113

    Google Scholar 

  • Wu SJ, Lei D, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Google Scholar 

  • Wu QS, Xi RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three Arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Article  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921. https://doi.org/10.1111/j.1469-8137.2008.02627

    Article  PubMed  Google Scholar 

  • Xue Q-Y, Chen Y, Li S-M, Chen L-F, Ding G-C, Guo D-W, Guo J-H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258

    Article  Google Scholar 

  • Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11(7):e0159007. https://doi.org/10.1371/journal.pone.0159007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo JH, Park IC, Kim WG (2012) Biocontrol of Anthracnose of Chili Pepper by Bacillus sp. NAAS-1. Kor J Mycol 40(4):277–281

    Google Scholar 

  • Zahedi H, Samira A (2015) Effect of plant growth promoting rhizobacteria (PGPR) and water stress on phytohormones and polyamines of soybean. Indian J Agric Res 49(5):427–431

    Google Scholar 

  • Zampieri BDB, Pinto AB, Schultz L, de Oliveira MA, de Oliveira AJFC (2016) Diversity and distribution of heavy metal-resistant bacteria in polluted sediments of the araca bay, sao sebastiao (sp), and the relationship between heavy metals and organic matter concentrations. Microb Ecol 72:582

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M-S, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577

    Google Scholar 

  • Zhou C, Zhou Y (2012) Strategies for viral cross protection in plants. Methods Mol Biol 894:69–81

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve Plant growth and drought resistance. Int J Mol Sci 17:976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, R., Suyal, D.C., Kumar, V., Jain, L., Soni, R. (2018). Stress-Tolerant Beneficial Microbes for Sustainable Agricultural Production. In: Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_8

Download citation

Publish with us

Policies and ethics