Skip to main content

Analysis of Chlorophyll Fluorescence: A Reliable Technique in Determination of Stress on Plants

  • Chapter
  • First Online:

Abstract

Photosynthetic research has been adopted the most informative and still remained unanswered in many aspects for plant growth and development. The basic and applied research for photosynthesis under ambient as well as natural or induced stress condition is well characterized in different plant species by the use of fluorescence technique. The description of photosynthetic process in terms of photochemistry and its quenching in heat and other forms has added much information to characterize the responses of plant genotypes. The principle, experimental setup, standardization with materials to materials, application and exercise, and finally derivation of data have been under revision for improved instrumentations. The imaging analysis of leaf under photosynthetic condition and its any deviation under stress condition has warranted the fluorescence technique as most reliable for in vivo, however, noninvasive and reliable in understanding plant’s behavior. Moreover, the amalgamation of fluorescence study through pulse amplitude modulation technique with CO2 gas exchange device has added advantages to the simultaneous recording of light-generated products in carbon reduction cycle. In reference to appropriate application of PAM measured florescence and imaging of chlorophyll fluorescence in determination, quantification and steady monitoring are customized according to instruments variation. Therefore, in this mini review, a specific focus has been set for an overview of fluorescence methodology with useful parameters, its proper use in plants’ responses, allied external factors affecting the photochemistry, the relationship with carbon reduction with acquired light energy, and further scope for up-gradation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 583–604

    Chapter  Google Scholar 

  • Adams WWIII, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, III WWA, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 49–64

    Chapter  Google Scholar 

  • Aldea M, Frank TD, DeLucia EH (2006) A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynth Res 90:161–172. ISSN 0166-8595

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 447–461

    Chapter  Google Scholar 

  • Ashraf M, Nawazish S, Athar HUR (2007) Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L). Pak J Bot 39(4):1123–1132

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. ISSN 1543-5008

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Oxborough K, Lawson T, Morison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125

    Article  CAS  PubMed  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312

    Article  Google Scholar 

  • Berger S, Benediktyovâa Z, Matoués K, Bonfig K, Mueller MJ (2007) Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806

    Article  CAS  PubMed  Google Scholar 

  • Biswal B, Biswal UC (1999) Photosynthesis under stress: stress signals and adaptive response of chloroplasts. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc., ISBN0-8247-1948-4, New York, pp 315–336

    Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Gorbe E, Roca D, Martinez PF (2008) Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ Exp Bot 64(1):65–74

    Article  CAS  Google Scholar 

  • Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501. ISSN 1360-1385

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166. ISSN 0304-4165

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2006) Monitoring and screening plant population with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784. ISSN 0022-0957

    Article  PubMed  Google Scholar 

  • Chen CP, Frank TD, Long SP (2009) Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. Plant Cell Environ 32:327–335. ISSN 0140-7791

    Article  CAS  PubMed  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894. ISSN 0305-7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai F, Zhou M-X, Zhang G-P (2007) The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiol Biochem 45:915–921. ISSN 0981-9428

    Article  CAS  PubMed  Google Scholar 

  • DeEll JR, Toivonen PMA (2000) Chlorophyll fluorescence as a non-destructive indicator of broccoli quality during storage in modified atmosphere packaging. Hortscience 35:256–259. ISSN 0018-5345

    Google Scholar 

  • Ehlert B, Hincha DK (2008) Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4:12. ISSN 1746-4811

    Article  PubMed  PubMed Central  Google Scholar 

  • Fambrini M, Degl’innocenti E, Cionini G, Pugliesi C, Guidi L (2010) Mesophyll cell defective1, a mutation that disrupts leaf mesophyll differentiation in sunflower. Photosynthetica 48:135–142. ISSN 0300-3604

    Article  Google Scholar 

  • Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant Cell Environ 29:720–728

    Article  CAS  PubMed  Google Scholar 

  • Feng Y-L, Cao K-F (2005) Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances. Photosynthetica 43:567–574. ISSN 0300-3604

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471. ISSN 1445-4408

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. ISSN 1435-8603

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbank RT, Von Caemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856

    Article  Google Scholar 

  • Gilmore AM, Govindjee (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Irrgang KD, Govindjee SS (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 513–548. ISBN 0-7923-5519-9

    Chapter  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849. ISSN 0140-7791

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E (2008) Ozone effects on high light-induced photoinhibition in Phaseolus vulgaris. Plant Sci 174:590–596. ISSN 0306-4484

    Article  CAS  Google Scholar 

  • Hendrikson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  Google Scholar 

  • Hogewoning SW, Harbinson J (2007) Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J Exp Bot 58:453–463. ISSN 0022-0957

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  Google Scholar 

  • Kangasjarvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036. ISSN 0140-7791

    Article  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Kanazawa A, Cruz JA, Ivanov B, Edwards GE (2004) The relationship between photosynthetic electron transfer and its regulation. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 251–278

    Chapter  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 463–495

    Chapter  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B, Ramma H (2006) Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol 47:972–983

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2 and humidity. Plant Physiol 128:1–11

    Article  Google Scholar 

  • Leipner J, Oxborough K, Baker NR (2001) Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. J Exp Bot 52:1689–1696

    CAS  PubMed  Google Scholar 

  • Li XP, Bjorkman O, Shih C, Grossman AR, Rosenqvist M (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99:15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2392–2401

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. ISSN 0022-0957

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Siebke K, Lippert P, Baur B, Mukherjee U, Weis E (2001) Sink-source transition in tobacco leaves visualized using chlorophyll fluorescence imaging. New Phytol 151:585–595

    Article  CAS  Google Scholar 

  • Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens Environ 113:2037–2051

    Article  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of nonphotochemical quenching of chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Morison JIL, Gallouet LT, Cornic G, Herbin R, Baker NR (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139:254–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedbal L, Whitmarsh J (2004) Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 389–407

    Chapter  Google Scholar 

  • Nejad AR, Harbinson J, van Meeteren U (2006) Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative humidity. J Exp Bot 57:3669–3678

    Article  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxborough K (2004) Using chlorophyll a fluorescence imaging to monitor photosynthetic performance. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 409–428

    Chapter  Google Scholar 

  • Oxborough K, Hanlon ARM, Underwood GJC, Baker NR (2000) In vivo estimation of photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. Limnol Oceanogr 45:1420–1425

    Article  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  CAS  PubMed  Google Scholar 

  • Quilliam RS, Swarbrick PJ, Scholes JD, Rolfe SA (2006) Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. J Exp Bot 57:55–69. ISSN 0022-0957

    Article  CAS  PubMed  Google Scholar 

  • Scharte J, Schon H, Weis E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plan Cell Environ 28:1421–1435. ISSN 1365-3040

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) The metabolic consequence of susceptibility and the activation of race-specific or broad-spectrum resistance pathways in barley leaves challenged with the powdery mildew fungus. Plant Cell Environ 29(6):1061–1076

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adak, M.K. (2018). Analysis of Chlorophyll Fluorescence: A Reliable Technique in Determination of Stress on Plants. In: Sengar, R., Singh, A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_4

Download citation

Publish with us

Policies and ethics