Skip to main content

Self-assembled Nanomaterials for Bacterial Infection Diagnosis and Therapy

  • Chapter
  • First Online:
Book cover In Vivo Self-Assembly Nanotechnology for Biomedical Applications

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Self-assembled nanomaterials are composed of building blocks through non-covalent interaction and spontaneously arranged into well-ordered nanostructures with defined functions. The well-organized arrangement and the two-/three-dimensional nanostructure of the architectures endow the nanomaterials abundant excellent biofunctions for bacterial infection detection and therapy applications. Beyond nature-inspired sources, the hybrid artificial nanomaterials including inorganic nanoparticles, nanosized small synthetic molecules assemblies, self-assembled multilayer polymers are reviewed in this chapter. In addition, the design concept, assembled driving forces, nanostructural effect, antimicrobial mechanism, detection methods are also discussed and summarized. As the promising field, in vivo self-assembled nanomaterials with specific stimuli-responsiveness and surprised biofunctions are also included in this chapter to explore and fabricate fascinated self-assembled nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes challenges and responses. Nat Med 10(12 Suppl):S122–S129

    Article  CAS  Google Scholar 

  2. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440

    Article  CAS  Google Scholar 

  3. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39(9):3480–3498

    Article  CAS  Google Scholar 

  4. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  CAS  Google Scholar 

  5. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  6. Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-Assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22(41):4567–4590

    Article  CAS  Google Scholar 

  7. Liu F, Soh Yan Ni A, Lim Y, Mohanram H, Bhattacharjya S, Xing B (2012) Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of gram-negative bacteria strains. Bioconjug Chem 23(8):1639–1647

    Article  CAS  Google Scholar 

  8. Silva ZS Jr, Bussadori SK, Fernandes KP, Huang YY, Hamblin MR (2015) Animal models for photodynamic therapy (PDT). Biosci Rep 35(6):e00265

    Article  CAS  Google Scholar 

  9. Sengupta S, Würthner F (2013) Chlorophyll J-Aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc Chem Res 46(11):2498–2512

    Article  CAS  Google Scholar 

  10. Mukherjee S, Vaishnava S, Hooper LV (2008) Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 65(19):3019–3027

    Article  CAS  Google Scholar 

  11. Zhu X, Jun Loh X (2015) Layer-by-layer assemblies for antibacterial applications. Biomater Sci 3(12):1505–1518

    Article  CAS  Google Scholar 

  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  13. Tarpley RJ (2014) Antibiotics: discontinue low-dose use. Science 343(6167):136–137

    Article  CAS  Google Scholar 

  14. Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124(50):14846–14847

    Article  CAS  Google Scholar 

  15. Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FW (2013) Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem

    Article  CAS  Google Scholar 

  16. Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H, Su Y, He Y (2015) Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip. Angew Chem Int Ed 54(17):5132–5136

    Article  CAS  Google Scholar 

  17. de Oliveira TV, Soares NdFF, Silva DJ, de Andrade NJ, Medeiros EAA, Badaró AT (2013) Development of PDA/Phospholipids/Lysine vesicles to detect pathogenic bacteria. Sens Actuat B Chem 188:385–392

    Article  CAS  Google Scholar 

  18. Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262

    Article  CAS  Google Scholar 

  19. Feng G, Yuan Y, Fang H, Zhang R, Xing B, Zhang G, Zhang D, Liu B (2015) A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem Commun 51(62):12490–12493

    Article  CAS  Google Scholar 

  20. Zhao X, Zhang S (2006) Molecular designer self-assembling peptides. Chem Soc Rev 35(11):1105–1110

    Article  CAS  Google Scholar 

  21. Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP (2013) Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J Am Chem Soc 135(41):15565–15578

    Article  CAS  Google Scholar 

  22. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3(3–4):22–30

    Article  CAS  Google Scholar 

  23. Rubin DJ, Amini S, Zhou F, Su H, Miserez A, Joshi NS (2015) Structural, nanomechanical, and computational characterization of d, l-Cyclic peptide assemblies. ACS Nano 9(3):3360–3368

    Article  CAS  Google Scholar 

  24. Cormier AR, Pang X, Zimmerman MI, Zhou H-X, Paravastu AK (2013) Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9):7562–7572

    Article  CAS  Google Scholar 

  25. Huang C-C, Ravindran S, Yin Z, George A (2014) 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 35(20):5316–5326

    Article  CAS  Google Scholar 

  26. Wu EC, Zhang S, Hauser CAE (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468

    Article  CAS  Google Scholar 

  27. Lin BF, Marullo RS, Robb MJ, Krogstad DV, Antoni P, Hawker CJ, Campos LM, Tirrell MV (2011) De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide Amphiphile assembly. Nano Lett 11(9):3946–3950

    Article  CAS  Google Scholar 

  28. Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49(18):1850–1852

    Article  CAS  Google Scholar 

  29. Irwansyah I, Li Y-Q, Shi W, Qi D, Leow WR, Tang MBY, Li S, Chen X (2015) Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv Mater 27(4):648–654

    Article  CAS  Google Scholar 

  30. Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916

    Article  CAS  Google Scholar 

  31. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799

    Article  CAS  Google Scholar 

  32. Li L-L, Qi G-B, Yu F, Liu S-J, Wang H (2015) An adaptive biointerface from self-assembled functional peptides for tissue engineering. Adv Mater 27(20):3181–3188

    Article  CAS  Google Scholar 

  33. Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into Amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765

    Article  CAS  Google Scholar 

  34. Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156

    Article  CAS  Google Scholar 

  35. Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463

    Article  CAS  Google Scholar 

  36. Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H (2016) Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals. ACS Appl Mater Interfaces 8(28):17936–17943

    Article  CAS  Google Scholar 

  37. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    Article  CAS  Google Scholar 

  38. Ravi J, Bella A, Correia AJV, Lamarre B, Ryadnov MG (2015) Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 17(24):15608–15614

    Article  CAS  Google Scholar 

  39. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3(3):238–250

    Article  CAS  Google Scholar 

  40. Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of FMOC-peptide functionalized cationic Amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415

    Article  CAS  Google Scholar 

  41. Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2(10):4031–4044

    Article  CAS  Google Scholar 

  42. Fukushima K, Tan JP, Korevaar PA, Yang YY, Pitera J, Nelson A, Maune H, Coady DJ, Frommer JE, Engler AC, Huang Y, Xu K, Ji Z, Qiao Y, Fan W, Li L, Wiradharma N, Meijer EW, Hedrick JL (2012) Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6(10):9191–9199

    Article  CAS  Google Scholar 

  43. Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463

    Article  CAS  Google Scholar 

  44. Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, Lu JR (2011) Designed antimicrobial and antitumor peptides with high selectivity. Biomacromol 12(11):3839–3843

    Article  CAS  Google Scholar 

  45. Shenkarev ZO, Balandin SV, Trunov KI, Paramonov AS, Sukhanov SV, Barsukov LI, Arseniev AS, Ovchinnikova TV (2011) Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 50(28):6255–6265

    Article  CAS  Google Scholar 

  46. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Micro 4(7):529–536

    Article  CAS  Google Scholar 

  47. Salick DA, Pochan DJ, Schneider JP (2009) Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123

    Article  CAS  Google Scholar 

  48. Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide Amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23(29):3682–3692

    Article  CAS  Google Scholar 

  49. Bhatia S, Camacho LC, Haag R (2016) Pathogen inhibition by multivalent ligand architectures. J Am Chem Soc 138(28):8654–8666

    Article  CAS  Google Scholar 

  50. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    Article  CAS  Google Scholar 

  51. Cado G, Aslam R, Seon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel JC, Senger B, Schneider F, Frere Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-Boutigue MH, Boulmedais F (2013) Self-defensive biomaterial coating against bacteria and yeasts: polysaccharide multilayer film with embedded antimicrobial peptide. Adv Funct Mater 23(38):4801–4809

    CAS  Google Scholar 

  52. Chen L, Liang JF (2013) Peptide fibrils with altered stability, activity and cell selectivity. Biomacromolecules 14(7):2326–2331

    Article  CAS  Google Scholar 

  53. Li L-l, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater:1351–1360

    Google Scholar 

  54. Wang H, Xu K, Liu L, Tan JPK, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang Y-Y, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus Neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881

    Article  CAS  Google Scholar 

  55. Chen C, Hu J, Zhang S, Zhou P, Zhao X, Xu H, Zhao X, Yaseen M, Lu JR (2012) Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials 33(2):592–603

    Article  CAS  Google Scholar 

  56. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept Sci 94(1):1–18

    Article  CAS  Google Scholar 

  57. Sikorska E, Dawgul M, Greber K, Iłowska E, Pogorzelska A (1838) Kamysz W (2014) Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA Biomembranes 10:2625–2634

    Google Scholar 

  58. Tian X, Sun F, Zhou X-R, Luo S-Z, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21(7):530–539

    Article  CAS  Google Scholar 

  59. Li L-L, Ma H-L, Qi G-B, Zhang D, Yu F, Hu Z, Wang H (2015) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 27(20):3181–3188

    Article  CAS  Google Scholar 

  60. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37(4):664–675

    Article  CAS  Google Scholar 

  61. Torrent M, Valle J, Nogués MV, Boix E, Andreu D (2011) The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew Chem Int Ed 50(45):10686–10689

    Article  CAS  Google Scholar 

  62. Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromol 11(2):402–411

    Article  CAS  Google Scholar 

  63. Xu D, Jiang L, Singh A, Dustin D, Yang M, Liu L, Lund R, Sellati TJ, Dong H (2015) Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. Chem Commun 51(7):1289–1292

    Article  CAS  Google Scholar 

  64. Chairatana P, Nolan EM (2014) Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136(38):13267–13276

    Article  CAS  Google Scholar 

  65. Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan-arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5(84):68610–68620

    Article  CAS  Google Scholar 

  66. Glinel K, Jonas AM, Jouenne T, Jrm Leprince, Galas L, Huck WTS (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77

    Article  CAS  Google Scholar 

  67. Lim K, Chua RRY, Saravanan R, Basu A, Mishra B, Tambyah PA, Ho B, Leong SSJ (2013) Immobilization studies of an engineered Arginine–Tryptophan-Rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5(13):6412–6422

    Article  CAS  Google Scholar 

  68. Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384

    Article  CAS  Google Scholar 

  69. Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M (2014) Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Lett 3(4):319–323

    Article  CAS  Google Scholar 

  70. Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang YY (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28):6593–6603

    Article  CAS  Google Scholar 

  71. Park J, Kim J, Singha K, Han D-K, Park H, Kim WJ (2013) Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 34(34):8766–8775

    Article  CAS  Google Scholar 

  72. Lu Y, Slomberg DL, Shah A, Schoenfisch MH (2013) Nitric oxide-releasing Amphiphilic Poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromol 14(10):3589–3598

    Article  CAS  Google Scholar 

  73. Shepherd J, Sarker P, Swindells K, Douglas I, MacNeil S, Swanson L, Rimmer S (2010) Binding bacteria to highly branched Poly(N-isopropyl acrylamide) Modified with Vancomycin induces the coil-to-globule transition. J Am Chem Soc 132(6):1736–1737

    Article  CAS  Google Scholar 

  74. Shrestha A, Kishen A (2012) The effect of tissue inhibitors on the antibacterial activity of Chitosan nanoparticles and photodynamic therapy. J Endod 38(9):1275–1278

    Article  Google Scholar 

  75. Pan Y, Huang X, Shi X, Zhan Y, Fan G, Pan S, Tian J, Deng H, Du Y (2015) Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr Polym 133:229–235

    Article  CAS  Google Scholar 

  76. Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24(30):4130–4137

    Article  CAS  Google Scholar 

  77. Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623

    Article  CAS  Google Scholar 

  78. He Y, Heine E, Keusgen N, Keul H, Möller M (2012) Synthesis and characterization of amphiphilic monodisperse compounds and Poly(ethylene imine)s: influence of their microstructures on the antimicrobial properties. Biomacromol 13(3):612–623

    Article  CAS  Google Scholar 

  79. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012) Antimicrobial and antifouling hydrogels formed in Situ from Polycarbonate and Poly(ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489

    Article  CAS  Google Scholar 

  80. Rawlinson L-AB, SaM Ryan, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2009) Antibacterial effects of Poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromol 11(2):443–453

    Article  CAS  Google Scholar 

  81. Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y (2012) Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials 33(4):1146–1153

    Article  CAS  Google Scholar 

  82. Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62

    Article  CAS  Google Scholar 

  83. Ganewatta MS, Tang C (2015) Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 63:A1–A29

    Article  CAS  Google Scholar 

  84. Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K (2011) Block versus random Amphiphilic copolymers as antibacterial agents. Biomacromol 12(10):3581–3591

    Article  CAS  Google Scholar 

  85. Zhu C, Yang Q, Liu L, Lv F, Li S, Yang G, Wang S (2011) Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv Mater 23(41):4805–4810

    Article  CAS  Google Scholar 

  86. Yuan W, Wei J, Lu H, Fan L, Du J (2012) Water-dispersible and biodegradable polymer micelles with good antibacterial efficacy. Chem Commun 48(54):6857–6859

    Article  CAS  Google Scholar 

  87. Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36(4):455–567

    Article  CAS  Google Scholar 

  88. Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2014) Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B Biointerfaces 123:318–325

    Article  CAS  Google Scholar 

  89. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33(19):1613–1631

    Article  CAS  Google Scholar 

  90. Venkataraman S, Zhang Y, Liu L, Yang Y-Y (2010) Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 31(7):1751–1756

    Article  CAS  Google Scholar 

  91. Coady DJ, Ong ZY, Lee PS, Venkataraman S, Chin W, Engler AC, Yang YY, Hedrick JL (2014) Enhancement of cationic antimicrobial materials via cholesterol incorporation. Adv Healthcare Mater 3(6):882–889

    Article  CAS  Google Scholar 

  92. Cui D, Szarpak A, Pignot-Paintrand I, Varrot A, Boudou T, Detrembleur C, Jérôme C, Picart C, Auzély-Velty R (2010) Contact-killing polyelectrolyte microcapsules based on Chitosan derivatives. Adv Funct Mater 20(19):3303–3312

    Article  CAS  Google Scholar 

  93. Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H (2014) Core-shell supramolecular gelatin nanoparticles for adaptive and on-demand antibiotic delivery. ACS Nano 8(5):4975–4983

    Article  CAS  Google Scholar 

  94. Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromol 14(4):1103–1112

    Article  CAS  Google Scholar 

  95. Cao A, Tang Y, Liu Y, Yuan H, Liu L (2013) A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels. Chem Commun 49(49):5574–5576

    Article  CAS  Google Scholar 

  96. Noimark S, Dunnill CW, Wilson M, Parkin IP (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38(12):3435–3448

    Article  CAS  Google Scholar 

  97. Yuan Y, Sun F, Zhang F, Ren H, Guo M, Cai K, Jing X, Gao X, Zhu G (2013) Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv Mater 25(45):6619–6624

    Article  CAS  Google Scholar 

  98. Faure E, Falentin-Daudré C, Lanero TS, Vreuls C, Zocchi G, Van De Weerdt C, Martial J, Jérôme C, Duwez A-S, Detrembleur C (2012) Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv Funct Mater 22(24):5271–5282

    Article  CAS  Google Scholar 

  99. Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S (2015) A supramolecular antibiotic switch for antibacterial regulation. Angew Chem Int Ed 54(45):13208–13213

    Article  CAS  Google Scholar 

  100. Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K (2010) Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater 22(44):5024–5028

    Article  CAS  Google Scholar 

  101. Yoshinari M, Oda Y, Kato T, Okuda K (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043–2048

    Article  CAS  Google Scholar 

  102. Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654

    Article  CAS  Google Scholar 

  103. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534

    Article  CAS  Google Scholar 

  104. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  CAS  Google Scholar 

  105. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbi 73(6):1712–1720

    Article  CAS  Google Scholar 

  106. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  Google Scholar 

  107. Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    CAS  Google Scholar 

  108. Pandurangan K, Kitchen JA, Blasco S, Paradisi F, Gunnlaugsson T (2014) Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem Commun 50 (74):10819–10822

    Article  CAS  Google Scholar 

  109. Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607

    Article  CAS  Google Scholar 

  110. Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8(5):369–375

    Article  CAS  Google Scholar 

  111. Tseng Y-T, Chang H-Y, Huang C-C (2012) Mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem Commun 48:8712–8714

    Article  CAS  Google Scholar 

  112. Won BY, Yoon HC, Park HG (2008) Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. Analyst 133(1)

    Article  CAS  Google Scholar 

  113. Pazos E, Sleep E, Rubert Perez CM, Lee SS, Tantakitti F, Stupp SI (2016) Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc 138(17):5507–5510

    Article  CAS  Google Scholar 

  114. Wang Y, Cao L, Guan S, Shi G, Luo Q, Miao L, Thistlethwaite I, Huang Z, Xu J, Liu J (2012) Silver mineralization on self-assembled peptide nanofibers for long term antimicrobial effect. J Mater Chem 22(6):2575–2581

    Article  CAS  Google Scholar 

  115. Baek K, Liang J, Lim WT, Zhao H, Kim DH, Kong H (2015) In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Appl Mater Interfaces 7(28):15359–15367

    Article  CAS  Google Scholar 

  116. Shome A, Dutta S, Maiti S, Das PK (2011) In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites. Soft Matter 7(6):3011–3022

    Article  CAS  Google Scholar 

  117. Wei X, Luo M, Liu H (2014) Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine. Colloids Surf B Biointerfaces 116:418–423

    Article  CAS  Google Scholar 

  118. Agarwal A, Guthrie KM, Czuprynski CJ, Schurr MJ, McAnulty JF, Murphy CJ, Abbott NL (2011) Polymeric multilayers that contain silver nanoparticles can be stamped onto biological tissues to provide antibacterial activity. Adv Funct Mater 21(10):1863–1873

    Article  CAS  Google Scholar 

  119. Jia Q, Shan S, Jiang L, Wang Y, Li D (2012) Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J Appl Polym Sci 125(5):3560–3566

    Article  CAS  Google Scholar 

  120. Lu H, Fan L, Liu QM, Wei JR, Ren TB, Du JZ (2012) Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem 3(8):2217–2227

    Article  CAS  Google Scholar 

  121. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  CAS  Google Scholar 

  122. Brahmachari S, Mandal SK, Das PK (2014) Fabrication of SWCNT-Ag nanoparticle hybrid included self-assemblies for antibacterial applications. PLoS One 9(9):e106775

    Article  CAS  Google Scholar 

  123. Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22(48):5463–5467

    Article  CAS  Google Scholar 

  124. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  Google Scholar 

  125. Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664

    Article  CAS  Google Scholar 

  126. Wang L, Luo J, Shan S, Crew E, Yin J, Zhong C-J, Wallek B, Wong SSS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83(22):8688–8695

    Article  CAS  Google Scholar 

  127. Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J Am Chem Soc 132(31):10771–10785

    Article  CAS  Google Scholar 

  128. Alonso A, Muñoz-Berbel X, Vigués N, Rodríguez-Rodríguez R, Macanás J, Muñoz M, Mas J, Muraviev DN (2013) Superparamagnetic Ag@Co-Nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Adv Funct Mater 23(19):2450–2458

    Article  CAS  Google Scholar 

  129. Xu J, Zhou X, Gao Z, Song Y-Y, Schmuki P (2016) Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed 55(2):593–597

    Article  CAS  Google Scholar 

  130. Gehring J, Trepka B, Klinkenberg N, Bronner H, Schleheck D, Polarz S (2016) Sunlight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. J Am Chem Soc 138(9):3076–3084

    Article  CAS  Google Scholar 

  131. Qiu Q, Liu T, Li Z, Ding X (2015) Facile synthesis of N-halamine-labeled silica-polyacrylamide multilayer core-shell nanoparticles for antibacterial ability. J Mater Chem B 3(36):7203–7212

    Article  CAS  Google Scholar 

  132. Fei J, Zhao J, Du C, Wang A, Zhang H, Dai L, Li J (2014) One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@shell nanostructures and their selective antibacterial applications. ACS Nano 8(8):8529–8536

    Article  CAS  Google Scholar 

  133. Pal S, Yoon EJ, Tak YK, Choi EC, Song JM (2009) Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide. J Am Chem Soc 131(44):16147–16155

    Article  CAS  Google Scholar 

  134. Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438

    Article  CAS  Google Scholar 

  135. L-l Li, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater 2(10):1351–1360

    Article  CAS  Google Scholar 

  136. Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang YY, Liu S (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale 5(9):3834–3840

    Article  CAS  Google Scholar 

  137. Taglietti A, Diaz Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28(21):8140–8148

    Article  CAS  Google Scholar 

  138. Hsiao C-W, Chen H-L, Liao Z-X, Sureshbabu R, Hsiao H-C, Lin S-J, Chang Y, Sung H-W (2015) Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv Funct Mater 25(5):721–728

    Article  CAS  Google Scholar 

  139. Borovička J, Metheringham WJ, Madden LA, Walton CD, Stoyanov SD, Paunov VN (2013) Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc 135(14):5282–5285

    Article  CAS  Google Scholar 

  140. Majumdar P, Nomula R, Zhao J (2014) Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J Mater Chem C 2(30):5982–5997

    Article  CAS  Google Scholar 

  141. Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA (2016) Spatiotemporally resolved tracking of bacterial responses to ROS-mediated damage at the single-cell level with quantitative functional microscopy. ACS Appl Mater Interfaces 8(24):15046–15057

    Article  CAS  Google Scholar 

  142. Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262

    Article  CAS  Google Scholar 

  143. Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT (2015) Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol 10(5):709–724

    Article  CAS  Google Scholar 

  144. Johnson GA, Muthukrishnan N, Pellois J-P (2012) Photoinactivation of gram positive and gram negative bacteria with the antimicrobial peptide (KLAKLAK)2 Conjugated to the hydrophilic photosensitizer Eosin Y. Bioconjug Chem 24(1):114–123

    Article  CAS  Google Scholar 

  145. Zhou X, Chen Z, Wang Y, Guo Y, Tung C-H, Zhang F, Liu X (2013) Honeycomb-patterned phthalocyanine films with photo-active antibacterial activities. Chem Commun 49(90):10614–10616

    Article  CAS  Google Scholar 

  146. Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X (2013) Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed 52(32):8285–8289

    Article  CAS  Google Scholar 

  147. Shrestha A, Kishen A (2012) Polycationic Chitosan-conjugated photosensitizer for antibacterial photodynamic therapy†. Photochem Photobiol 88(3):577–583

    Article  CAS  Google Scholar 

  148. Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S (2011) Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir 28(4):2091–2098

    Article  CAS  Google Scholar 

  149. Yang K, Gitter B, Rüger R, Albrecht V, Wieland GD, Fahr A (2012) Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria†. Photochem Photobiol 88(3):548–556

    Article  CAS  Google Scholar 

  150. Shijie L, Shenglin Q, Lili L, Guobin Q, Yaoxin L, Zengying Q, Hao W, Chen S (2015) Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology 26(49):495602

    Article  CAS  Google Scholar 

  151. Xiong M-H, Li Y-J, Bao Y, Yang X-Z, Hu B, Wang J (2012) Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 24(46):6175–6180

    Article  CAS  Google Scholar 

  152. Xiong M-H, Bao Y, Yang X-Z, Wang Y-C, Sun B, Wang J (2012) Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc 134(9):4355–4362

    Article  CAS  Google Scholar 

  153. Shukla A, Fang JC, Puranam S, Hammond PT (2012) Release of vancomycin from multilayer coated absorbent gelatin sponges. J Control Release 157(1):64–71

    Article  CAS  Google Scholar 

  154. Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Holl MMB, Orr BG, Baker JR (2012) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7(1):214–228

    Article  CAS  Google Scholar 

  155. Ren C, Wang H, Zhang X, Ding D, Wang L, Yang Z (2014) Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chem Commun 50(26):3473–3475

    Article  CAS  Google Scholar 

  156. Sémiramoth N, Meo CD, Zouhiri F, Saïd-Hassane F, Valetti S, Gorges R, Nicolas V, Poupaert JH, Chollet-Martin S, Desmaële D, Gref R, Couvreur P (2012) Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6(5):3820–3831

    Article  CAS  Google Scholar 

  157. Guchhait G, Altieri A, Gorityala B, Yang X, Findlay B, Zhanel GG, Mookherjee N, Schweizer F (2015) Amphiphilic tobramycins with immunomodulatory properties. Angew Chem Int Ed 54(21):6278–6282

    Article  CAS  Google Scholar 

  158. Ray PC, Khan SA, Singh AK, Senapati D, Fan Z (2012) Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 41(8):3193–3209

    Article  CAS  Google Scholar 

  159. Wu J, Zawistowski A, Ehrmann M, Yi T, Schmuck C (2011) Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J Am Chem Soc 133(25):9720–9723

    Article  CAS  Google Scholar 

  160. Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653

    Article  CAS  Google Scholar 

  161. Saneyoshi H, Ito Y, Abe H (2013) Long-lived luminogenic probe for detection of RNA in a crude solution of living bacterial cells. J Am Chem Soc 135(37):13632–13635

    Article  CAS  Google Scholar 

  162. Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18(23):3145–3148

    Article  CAS  Google Scholar 

  163. Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881

    Article  CAS  Google Scholar 

  164. Azzopardi EA, Ferguson EL, Thomas DW (2013) The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 68(2):257–274

    Article  CAS  Google Scholar 

  165. Agard NJ, Maltby D, Wells JA (2010) Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteom 9(5):880–893

    Article  CAS  Google Scholar 

  166. Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27(15):2027–2030

    Article  CAS  Google Scholar 

  167. Milo S, Thet NT, Liu D, Nzakizwanayo J, Jones BV, Jenkins ATA (2016) An in-situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81:166–172

    Article  CAS  Google Scholar 

  168. Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589

    Article  CAS  Google Scholar 

  169. Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2(4):417–426

    Article  CAS  Google Scholar 

  170. Dudak FC, Boyaci İH (2014) Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B. Food Anal Methods 7(2):506–511

    Article  Google Scholar 

  171. Chen K, Wu L, Jiang X, Lu Z, Han H (2014) Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosens Bioelectron 62:196–200

    Article  CAS  Google Scholar 

  172. Xiang Y, Zhang H, Jiang B, Chai Y, Yuan R (2011) Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens. Anal Chem 83(11):4302–4306

    Article  CAS  Google Scholar 

  173. Budin G, Chung HJ, Lee H, Weissleder R (2012) A magnetic gram stain for bacterial detection. Angew Chem Int Ed 51(31):7752–7755

    Article  CAS  Google Scholar 

  174. Chung HJ, Reiner T, Budin G, Min C, Liong M, Issadore D, Lee H, Weissleder R (2011) Ubiquitous detection of gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles. ACS Nano 5(11):8834–8841

    Article  CAS  Google Scholar 

  175. Kinnunen P, Carey ME, Craig E, Brahmasandra SN, McNaughton BH (2014) Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sens Actuat B Chem 190:265–269

    Article  CAS  Google Scholar 

  176. Xu Y-G, Liu Z-M, Zhang B-Q, Qu M, Mo C-S, Luo J, Li S-L (2016) Development of a novel target-enriched multiplex PCR (Tem-PCR) assay for simultaneous detection of five foodborne pathogens. Food Control 64:54–59

    Article  CAS  Google Scholar 

  177. Yang K, Jenkins DM, Su WW (2011) Rapid concentration of bacteria using submicron magnetic anion exchangers for improving PCR-based multiplex pathogen detection. J Microbiol Methods 86(1):69–77

    Article  CAS  Google Scholar 

  178. Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128(51):16476–16477

    Article  CAS  Google Scholar 

  179. van Oosten M, Schafer T, Gazendam JA, Ohlsen K, Tsompanidou E, de Goffau MC, Harmsen HJ, Crane LM, Lim E, Francis KP, Cheung L, Olive M, Ntziachristos V, van Dijl JM, van Dam GM (2013) Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun 4:2584

    Article  CAS  Google Scholar 

  180. Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, Van Simaeys G, Jacobs F, Goldman S (2006) Imaging infection with 18F-FDG–labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med 47(4):625–632

    Google Scholar 

  181. Clinical diagnosis of bacterial infection via FDG-PET imaging (2013) Can Chem Trans 1 (2):85–104

    Google Scholar 

  182. Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137(15):3405–3421

    Article  CAS  Google Scholar 

  183. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845

    Article  CAS  Google Scholar 

  184. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101(42):15027–15032

    Article  CAS  Google Scholar 

  185. Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AER, Jones BV, Jenkins ATA (2016) Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 8(24):14909–14919

    Article  CAS  Google Scholar 

  186. Zhou J, Loftus AL, Mulley G, Jenkins ATA (2010) A thin film detection/response system for pathogenic bacteria. J Am Chem Soc 132(18):6566–6570

    Article  CAS  Google Scholar 

  187. da Silva JSL, Oliveira MDL, de Melo CP, Andrade CAS (2014) Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf B Biointerfaces 117:549–554

    Article  CAS  Google Scholar 

  188. Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T, Jiang X, Schönherr H (2015) Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromol 16(3):832–841

    Article  CAS  Google Scholar 

  189. Tücking K-S, Grützner V, Unger RE, Schönherr H (2015) Dual enzyme-responsive capsules of hyaluronic acid-block-Poly(Lactic Acid) for sensing bacterial enzymes. Macromol Rapid Commun 36(13):1248–1254

    Article  CAS  Google Scholar 

  190. Mouffouk F, da Costa AMR, Martins J, Zourob M, Abu-Salah KM, Alrokayan SA (2011) Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron 26(8):3517–3523

    Article  CAS  Google Scholar 

  191. Guo Y, Wang Y, Liu S, Yu J, Wang H, Cui M, Huang J (2015) Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface. Analyst 140(2):551–559

    Article  CAS  Google Scholar 

  192. Maurer EI, Comfort KK, Hussain SM, Schlager JJ, Mukhopadhyay SM (2012) Novel platform development using an assembly of carbon nanotube, nanogold and immobilized RNA capture element towards rapid selective sensing of bacteria. Sensors 12(6):8135

    Article  CAS  Google Scholar 

  193. Lian Y, He F, Wang H, Tong F (2015) A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens Bioelectron 65:314–319

    Article  CAS  Google Scholar 

  194. Wan Y, Lin Z, Zhang D, Wang Y, Hou B (2011) Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron 26(5):1959–1964

    Article  CAS  Google Scholar 

  195. Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C-H, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9):3620–3626

    Article  CAS  Google Scholar 

  196. Ding X, Li H, Deng L, Peng Z, Chen H, Wang D (2011) A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. Biosens Bioelectron 26(11):4596–4600

    Article  CAS  Google Scholar 

  197. Kim I, Jeong H-H, Kim Y-J, Lee N-E, K-m Huh, Lee C-S, Kim GH, Lee E (2014) A Light-up 1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. J Mater Chem B 2(38):6478–6486

    Article  CAS  Google Scholar 

  198. Gao M, Hu Q, Feng G, Tomczak N, Liu R, Xing B, Tang BZ, Liu B (2015) A Multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv Healthcare Mater 4(5):659–663

    Article  CAS  Google Scholar 

  199. Franzini RM, Kool ET (2011) Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry. Bioconjug Chem 22(9):1869–1877

    Article  CAS  Google Scholar 

  200. Deng B, Chen J, Zhang H (2014) Assembly of multiple DNA components through target binding toward homogeneous, isothermally amplified, and specific detection of proteins. Anal Chem 86(14):7009–7016

    Article  CAS  Google Scholar 

  201. Eker B, Yilmaz MD, Schlautmann S, Gardeniers JGE, Huskens J (2011) A supramolecular sensing platform for phosphate anions and an anthrax biomarker in a microfluidic device. Int J Mol Sci 12(11):7335

    Article  CAS  Google Scholar 

  202. Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607

    Article  CAS  Google Scholar 

  203. Panizzi P, Nahrendorf M, Figueiredo J-L, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R (2011) In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17(9):1142–1146

    Article  CAS  Google Scholar 

  204. Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H (2015) In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv Mater 27(40):6125–6130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, LL. (2018). Self-assembled Nanomaterials for Bacterial Infection Diagnosis and Therapy. In: Wang, H., Li, LL. (eds) In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6913-0_3

Download citation

Publish with us

Policies and ethics