Skip to main content

Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Chromium (Cr) is one of the important environmental pollutant generated from various industrial processes as well as extensive mining activities. Contamination of the soil, surface and ground water with Cr6+ is an issue of potential concern due to its toxicity to plant, animal and human. Remediation of chromium contaminated medium is a challenge to modern day research to formulate safe, viable and cost effective technology. There are different methods available for remediation of chromium, but microbial bioremediation is found to be a promising method. Microbial bioremediation of toxic hexavalent chromium to non-toxic trivalent chromium found to be economic and eco-friendly method for chromate detoxification due to their diversity, versatility, and adaptability. The bacterial species those are able to survive under such toxic conditions prevalent in Cr6+ contaminated environments are generally tolerant or resistant to chromium. Such bacteria exhibit various mechanism of chromate resistance such as, ion transport, reduction, DNA repair and other. Bacteria employ both enzymatic and non-enzymatic methods of chromate reduction. Enzymatic Cr6+ reduction occurs either in aerobic or anaerobic conditions or both. Anaerobic reduction is carried out by membrane bound reductases such as flavin reductases, cytochromes and hydrogenases and use chromate as terminal electron acceptor while aerobic reduction is associated with soluble proteins and requires nicotinamide adenine dinucleotide phosphate (NADPH) and flavin mononucleotide (FMN) as an electron donor.

Assessment of bacterial communities surviving under such hostile conditions i.e. chromium contaminated environment is important for bioremediation study which can be made by culture dependent and culture independent (metagenomics) methods. Thus, many bacteria were isolated and identified from different contaminated environment and their Cr6+ reduction potentials were evaluated. Several study reports on bacterial communities from other contaminated environments provided the structural, functional and metabolic characteristics to understand their mechanisms of resistance. In recent years, bioinformatics have been demonstrated to be a useful tool for determination of structure and function of genes and proteins associated in chromate reduction. In this chapter, a detailed description on various methods of assessing the microbial community patterns in chromium contaminated soils as well as identification of underlying mechanisms involved in chromate resistance have been provided which could be further exploited biotechnologically for bioremediation of hexavalent chromium from the polluted environment. Apart from this, in silico analysis of the genes and proteins associated in chromate resistance and reduction using various bioinformatics tools and techniques were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004a) Mechanism of chromate reduction by the Escherichia Coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  PubMed  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004b) Chromate-reducing properties of soluble flavoproteins from pseudomonas putida and Escherichia Coli. Appl Environ Microbiol 70:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia Coli K-12. J Bacteriol 188(9):3371e–33381

    Article  CAS  Google Scholar 

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C, Matin A (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia Coli. FEMS Microbiol Lett 285:97–100

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24(4):687–707

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Barajas E, Jeronimo-Rodriguez P, Ramirez-Diaz MI, Rensing C, Cervantes C (2012) The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. World J Microbiol Biotechnol 28:865–869

    Article  CAS  PubMed  Google Scholar 

  • Alam MZ, Malik A (2008) Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J Basic Microbiol 48:416–420

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AH, Moreno-sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas Aeruginosa. J Bacteriol 181:7398–7400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ball JW, Nordstrom DK (1998) Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J Chem Eng Data 43:895–918. https://doi.org/10.1021/je980080a

    Article  CAS  Google Scholar 

  • Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, Francis AJ, Matin A (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72:7074–7082. https://doi.org/10.1128/AEM.01334-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(12):4035–4041. https://doi.org/10.1128/AEM.02463-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas Fluorescens strain LB300. Arch Microbiol 150(5):426e431

    Article  Google Scholar 

  • Bose RN, Moghaddas S, Gelerinter E (1992) Long-lived chromium(IV) and chromium(V) metabolites in the chromium(VI) glutathione reaction – NMR, ESR, HPLC, and kinetic characterization. Inorg Chem 31:1987–1994

    Article  CAS  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  CAS  PubMed  Google Scholar 

  • Bruschi M, Bertrand P, More C, Leroy G, Bonicel J, Haladjian J et al (1992) Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Biochemistry 31:3281–3288

    Article  CAS  PubMed  Google Scholar 

  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2003a) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003b) In vitro reduction of hexavalent chromium by a cell-free extract of bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  PubMed  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant bacillus sp. strain. Antonie Van Leeuwenhoek 68:203–208

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Ohtake H (1988) Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiol Lett 56:173–176. https://doi.org/10.1111/j.1574-6968.1988.tb03172.x.

    Article  CAS  Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas Aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M (2002) Bioremediation of chromate: thermodynamic analysis of effects of Cr(VI) on sulfate reducing bacteria. Appl Microbiol Biotechnol 60:352–360

    Article  CAS  PubMed  Google Scholar 

  • Chardin B, Giudici-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Codd R, Irwin JA, Lay PA (2003) Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opin Chem Biol 17(2):213e219

    Google Scholar 

  • Czjzek M, Guerlesquin F, Bruschi M, Haser R (1996) Crystal structure of a dimeric octaheme cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway. Structure 4:395–404

    Article  CAS  PubMed  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das NN, Thatoi HN (2014) Investigation on mechanism of Cr(VI) reduction and removal by bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112e121

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das N, BD( P (2013) Reduction of hexavalent chromium by bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85(11):1471e–11479

    Google Scholar 

  • Dillon CT, Lay PA, Cholewa M, Legge GJF, Bonin AM, Collins TJ, Kostka KL, SheaMcCarthy G (1997) Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes. Chem Res Toxicol 10:533–535

    Article  CAS  PubMed  Google Scholar 

  • Eccles H (1995) Removal of heavy metals from effluents streams-why select a biological process. Int Biodeterior Biodegrad 160(1e3):5e16

    Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 160(1):81e97

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2004) Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol Lett 26:1623–1628

    Article  CAS  PubMed  Google Scholar 

  • Flores-Alvarez LJ, Corrales-Escobosa AR, Cortes-Penagos C, Martinez-Pacheco M, Wrobel-Zasada K, Wrobel-Kaczmarczyk K, Cervantes C, Gutierrez-Corona F (2012) The Neurospora crassa chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation. Curr Genet 58:281–290

    Article  CAS  PubMed  Google Scholar 

  • Focardi S, Pepi M, Focardi SE (2013) Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In: Chamy R (ed) Biodegradation—life of science. InTech. Available at http://www.intechopen.com/books/biodegradation-life-of-science/microbial-reduction-of-hexavalent-chromium-as-a-mechanismof-detoxification-and-possible-bioremediat

  • Gibb HJ, Lees PSJ, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Industr Med 38:115–126

    Article  CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Shaked T, Pukall R, Schumann P (2009) Leucobacter chironomi sp nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670

    Article  CAS  PubMed  Google Scholar 

  • He ZG, Gao FL, Sha T, YH H, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    Article  CAS  PubMed  Google Scholar 

  • He MY, Li XY, Guo LA, Miller SJ, Rensing C, Wang GJ (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus Cereus strain SJ1. BMC Microbiol 10:221

    PubMed  PubMed Central  Google Scholar 

  • He MY, Li XY, Liu HL, Miller SJ, Wang GJ, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688

    Article  CAS  PubMed  Google Scholar 

  • Ilhan S, Nurbas M, Kiliarslan S, Ozdag H (2004) Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish Electronic J Biotechnol 2:50–57

    Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juhnke S, Peitzsch N, H€ubener N, Große C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kalabegishvili TL, Tsibakhashvili NY, Holman HYN (2003) Electron spin resonance study of chromium(V) formation and decomposition by basalt-inhabiting bacteria. Environ Sci Technol 37:4678–4684

    Article  CAS  PubMed  Google Scholar 

  • Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003a) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164

    CAS  PubMed  Google Scholar 

  • Kamaludeen SB, Megharaj M, Naidu R, Singleton I, Juhasz AL, Hawke BG, N( S (2003b) Microbial activity and phospholipid fatty acid pattern in long-term tannery wastecontaminated soil. Ecotoxicol Environ Safety 56:302–310

    Article  CAS  PubMed  Google Scholar 

  • Kampfer P, Rossello-Mora R, Scholz HC, Welinder-Olsson C, Falsen E, Busse HJ (2006) Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56(8):1823–1829

    Article  PubMed  CAS  Google Scholar 

  • Kampfer P, Scholz H, Huber B, Thummes K, Busse HJ, Maas EW et al (2007) Desc ription o f Pseudochrobactrum kiredjianiae sp. nov. Int J Syst Evol Microbiol 57(4):755–760

    Article  PubMed  CAS  Google Scholar 

  • Kampfer P, Huber B, Lodders N, Warfolomeow I, Busse HJ, Scholz HC (2009) Pseudochrobactrum lubricantis sp. nov., isolated from a metal-working fluid. Int J Syst Evol Microbiol 59(10):2464–2467

    Article  PubMed  CAS  Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9:183–193

    Article  CAS  Google Scholar 

  • Klonowska A, Clark ME, Thieman SB, Giles BJ, Wall JD, Fields MW (2008) Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Appl Microbiol Biotechnol 78:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263e283

    Article  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay PA, Levina A (1998) Activation of molecular oxygen during the reactions of chromium (VI/V/IV) with biological reductants: implications for chromium-induced genotoxicities. J Am Chem Soc 120:6704–6714

    Article  CAS  Google Scholar 

  • Liu YG, WH X, Zeng GM, Li X, Gao H (2006) Cr (VI) reduction by bacillus sp. isolated from chromium landfill. Process Biochem 41(9):1981e1986

    Google Scholar 

  • Liu ZM, Wu Y, Lei CF, Liu PM, Gao MY (2012) Chromate reduction by a chromate-resistant bacterium Microbacterium sp. World J Microbiol Biotechnol 28:1585–1592. https://doi.org/10.1007/s11274-011-0962-5

    Article  CAS  PubMed  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994) Bioremediation of chromatecontaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. Nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344. https://doi.org/10.1007/BF00290916.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhu W, Long H, Chai L, Wang Q (2007) Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42(6):1028e1032

    Article  CAS  Google Scholar 

  • Mangaiyarkarasi MM, Vincent S, Janarthanan S, Rao TS, Tata BVR (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18:157–167. https://doi.org/10.1016/j.sjbs.2010.12.003

    Article  CAS  Google Scholar 

  • Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    Article  CAS  PubMed  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  PubMed  Google Scholar 

  • Mistry K, Desai C, Lal S, Patel K, Patel B (2010) Hexavalent chromium reduction by staphylococcus sp. isolated from Cr(VI) contaminated land fill. Int J Biotechnol Biochem 6(1):117–129

    Google Scholar 

  • Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42(17):4538–4548

    Article  CAS  PubMed  Google Scholar 

  • Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MD, Kaplan S (1994) Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60:17–23

    Google Scholar 

  • Mugerfeld I, Law BA, Wickham GS, Thompson DK (2009) A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol 82:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, JM( M (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88(1):98e–106

    Article  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotech 25:198e203

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  PubMed  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/ sulfate antiporters. J Bacteriol 180:5799–5802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990) Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter Cloacae. Environ Technol 11:663–668

    Article  CAS  Google Scholar 

  • Opperman DJ, Heerden EV (2007) Aerobic Cr (VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1364–5072

    Article  CAS  Google Scholar 

  • Ortega R, Fayard B, Salome M, Deves G, Susini J (2005) Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds. Chem Res Toxicol 18:1512–1519

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795. https://doi.org/10.1128/AEM.66.5.1788-1795.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, LF( M (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57(1e2):257e–2261

    Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes Eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel BE, Moreno-Sanchez R, Cervantes C (2002) Efflux of chromate by Pseudomonas Aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    Article  CAS  PubMed  Google Scholar 

  • Poljsak B, Pocs I, Raspor P, Pesti M (2010) Interference of chromium with biological systems in yeast and fungi: a review. J Basic Microbiol 50(1):21e36

    Article  CAS  Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, L( X (2002) A bacterial flavin reductase system reduces chromates(III)eNAD þ complex. Biochem Bio-phys Res 294(1):76e–781

    Article  CAS  Google Scholar 

  • Asmatullah, Qureshi SN, Shakoori AR (1998) Hexavalent chromium induced congenital abnormalities in chick embryos. J Appl Toxicol 18(3):167e171

    Article  Google Scholar 

  • Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  CAS  PubMed  Google Scholar 

  • Robins KJ, Hooks DO, Rehm BHA, Ackerley DF (2013) Escherichia Coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One 8:e59200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2008) Pseudochrobactrum glaciei sp. nov., isolated from sea ice collected from Peter the Great Bay of the Sea of Japan. Int J Syst Evol Microbiol 58(10):2454–2458

    Article  CAS  PubMed  Google Scholar 

  • Saraiva LM, Da Costa PN, Legall J (1999) Sequencing the gene encoding Desulfovibrio desulfuricans ATCC 27774 nine-heme cytochrome c. Biochem Biophys Res Commun 262:629–634

    Article  CAS  PubMed  Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53(3):348e351

    Article  Google Scholar 

  • Shen H, Wang Y-T (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia Coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea Mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res 21:1971–1979. https://doi.org/10.1007/s11356-013-2098-7

    Article  CAS  Google Scholar 

  • Srinath T, Khare S, Ramteke PW (2001) Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. J Gen Appl Microbiol 47:307–312

    Article  CAS  PubMed  Google Scholar 

  • Stearns DM, Wetterhahn KE (1997) Intermediates produced in the reaction of chromium(VI) with dehydroascorbate cause single-strand breaks in plasmid DNA. Chem Res Toxicol 10:271–278

    Article  CAS  PubMed  Google Scholar 

  • Stewart DI, Burke IT, Mortimer RJG (2007) Stimulation of microbially mediated chromate reduction in alkaline soil–water systems. Geomicrobiol J 4:655–669

    Article  CAS  Google Scholar 

  • Sturm G, Jacobs J, Sproer C, Schumann P, Gescher J (2011) Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 61:956–960

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium(VI) reductase of Pseudomonas Ambigua G-1: Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour Technol 98:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Thompson DK, Hettich RL (2007) Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res 6:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Thompson DK, Chourey K, Wickham GS, Thieman SB, Verberkmoes NC, Zhang B, McCarthy AT, Rudisill MA, Shah M, Hettich RL (2010) Proteomics reveals a core molecular response of pseudomonas putida F1 to acute chromate challenge. BMC Genomics 11:311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turick CE, Apel WA, Carmiol NS (1996) Isolation of hexavalent chromium contaminated and non-contaminated environments. Appl Microbiol Biotechnol 44(5):683e688

    Article  Google Scholar 

  • Van Engelen MR, Peyton BM, Mormile MR, Pinkart HC (2008) Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from soap Lake, Washington. Biodegradation 19:841–850

    Article  CAS  Google Scholar 

  • Venitt S, Levy LS (1974) Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature (London) 250:493–495

    Article  CAS  Google Scholar 

  • Verma T, Singh N (2013) Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol. J Basic Microbiol 53:277–290

    Article  CAS  PubMed  Google Scholar 

  • Viti C, Giovannetti L (2007) Bioremediation of soils polluted with hexavalent chromium using bacteria-the challenge. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 57–76

    Chapter  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wang P-C, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter Cloacae. J Bacteriol 172:1670–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PC, Toda K, Ohtake H, Kusaka I, Yabe I (1991) Membrane-bound respi-ratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett 78(1):11e15

    Article  Google Scholar 

  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater Lake. Appl Microbiol Biotechnol 75:627–632

    Article  CAS  PubMed  Google Scholar 

  • Wise SS, Elmore LW, Holt SE, Little JE, Anto Nucci PG, Bryant BH, Pierce WSJ (2004) Telomerase mediated lifespan extension of human bron-chial cells does not affect hexavalent chromium induced cytotoxicity or geno-toxicity. Mol Cell Biochem 255(1e2):103e112

    Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacteria. Appl Environ Microbiol 70:5595–5602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Nakajima K (2005) Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus Mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55(4):1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Zhang KD, Li FL (2011) Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biotechnol 90:1163–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Thatoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thatoi, H.N., Pradhan, S.K. (2017). Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_13

Download citation

Publish with us

Policies and ethics