Skip to main content

Insights of Novel Breeding Strategies in Sustainable Crop Production

  • Chapter
  • First Online:
Sustainable Agriculture towards Food Security

Abstract

Differential environmental conditions in various geographical regions are not ample for growing crop plants to meet the required production. Such an environmental hindrance towards agriculture are varied, viz. biotic and abiotic stresses which limit productivity of crops. The scarcity of food production in 2050 is estimated 70% more production for growing world population. The efforts have been taken for crop production for requirement; however, sustainability in agriculture is always a challenge. One of the crucial ways to sustainable agriculture since long ago is breeding strategies which proved still for increasing crop production. In this context, various breeding techniques have been discussed for production crops in sustainable manner through novel and advanced strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya SN, Thomas JE, Basu SK (2007) Improvement in the medicinal and nutritional properties of fenugreek (Trigonella foenumgraecum L.) In: Acharya SN, Thomas JE (eds) Advances in medicinal plant research. India Research Signpost, Trivandrum

    Google Scholar 

  • Acquaah G (2006) Principles of plant genetics and breeding.Wiley-Blackwell, Chichester; Wani MR, Kozgar MI, Tomlekova N et al (2002) Mutation breeding: a novel technique for genetic improvement of pulse crops particularly Chickpea (Cicer arietinum L). In: Parvaiz A, Wani MR, Afshari CA (eds) Perspective: microarray technology, seeing more than spots. Endocrinol 143(6):1983–1989

    Google Scholar 

  • Afshari CA (2002) Perspective: Microarray Technology, Seeing More Than Spots. Endocrinology 143(6):1983–1989

    Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to pre-harvest sprouting in wheat (Triticum aestivum). Crop Sci 33:453–459

    Article  CAS  Google Scholar 

  • Arulbalachandran D, Mullainathan L, Velu S et al (2010) Genetic variability, heritability and genetic advance of quantitative traits in black gram by effects of mutation in field trail. Afr J Biotechnol 9(19):2731–2735

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinnauer Kluwer Aca Pub, Sunderland

    Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa acuminate AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hort 73:11–22

    Article  CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier. Stud Plant Sci 5:167–214

    Article  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 1:33–37

    Article  Google Scholar 

  • Caligari PDS (2001) Plant breeding and crop improvement. Encyclopedia of life sciences. www.el

    Google Scholar 

  • Chakravarthi BK, Naravaneni R (2006) SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L). Afr J Biotechnol 5(9):684–688

    CAS  Google Scholar 

  • Cheung F et al (2006) Sequencing Medicago truncatula expressed sequenced tags using life sciences technology. BMC Genomics 7:272–282

    Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) Highthroughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Zhao C, Ding A et al. (2013) Construction of an integrative linkage map and QTL mapping of grain yieldrelated traits using three related wheat RIL populations. Theor Appl Genet 127, 659–675. [PubMed]

    Google Scholar 

  • Deppe C (2000) Breed Your Own Vegetable Varieties. Chelsea Green Publishing, pp 237–244

    Google Scholar 

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–120s1

    Article  CAS  Google Scholar 

  • Devaux P (1989) Variations in the proportions of fertile colchicine-treated haploid plants derived from winter barley plants. Plant Breed 103:247–250

    Article  Google Scholar 

  • Dias JS (1989) The use of molecular markers in selection of vegetables. SECH Actas de Horticult 3:175–181

    Google Scholar 

  • Dias JS (2011) Biodiversity and vegetable breeding in the light of developments in intellectual property rights. In: Grillo O, Verona G (eds) Ecosystems biodiversity chapter 17. INTECH Publisher, Rijeka, pp 389–428

    Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1084–1086

    Google Scholar 

  • Dunwell JM (1986) Pollen, ovule and embryo culture as tools in plant breeding. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 375–404

    Chapter  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC et al (2001) Implementation of markers in Australian wheat breeding. Crop Pasture Sci 52(12):1349–1356

    Article  CAS  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edward D, Batley J (2009) Plant genome sequencing: application for crop improvement. Plant Biotech J 2–9

    Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2, 4,6trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TF (1996): Introduction to Quantitative Genetics. 4th Ed. Essex, Longman, p 464

    Google Scholar 

  • FAO (2004) Scientific facts on genetically modified cropsFAO Food and Agricultural Organization (2002) World agriculture: towards 2015/2030 FAO Rome FAO/IAEA database of mutant varieties. http://mvgs.iaea.org

  • Forster BP, Shu QY (2012) Plant mutagenesis in crop improvement: basic terms and applications. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 9–20

    Chapter  Google Scholar 

  • Gale M (2002) Applications of molecular biology and genomics to genetic enhancement of crop tolerance to abiotic stress – a discussion document. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Gibson G (2002) Microarrays in ecology and evolution: a preview. Mol Ecol 11(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Glickman BW, Saddi VA, Curry J (1994) International commission for protection against environment mutagens and carcinogens. Working paper no 2. Spontaneous mutations in mammalian cells. Mutat Res 304:19–32

    Article  CAS  PubMed  Google Scholar 

  • Goodman MM (2004) Plant breeding requirements for applied molecular biology. Crop Sci 44:1913–1914

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia Univ. Press, New York

    Google Scholar 

  • Griffing B (1975) Efficiency changes due to use of doubled-haploids in recurrent selection methods. Theor Appl Genet 46:367–386

    CAS  PubMed  Google Scholar 

  • Grout BWW (1986) Embryo culture and cryopreservation for the conservation of genetic resources of species with recalcitrant seed, p. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 303–309

    Google Scholar 

  • Guimaraes EC, Ruane J, Scherf BD, Sonnino A, Dargie JD (2007) Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome

    Google Scholar 

  • Gunckel JE, Sparrow AH (1961) Ionizing radiation: biochemical, physiological and morphological aspects of their effects on plants. In: Ruhland W (ed) Encyclopedia of plant physiology. Springer, Berlin, pp 555–611

    Google Scholar 

  • Gupta PK, Varshney RK (2004) Cereal genomics: an overview. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Press, Dordrecht, p 639

    Google Scholar 

  • Gupta P et al (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta P, Roy J, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Crop Sci 80:4–25

    Google Scholar 

  • Haddad L, Godfray H, Charles J, Beddington JR, Crute Ian R, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Am Assoc Adv Sci 327(5967):812–818

    Google Scholar 

  • Hajra NG (1979) Induction of mutations by chemical mutagens in tall indica rice. Indian Agric 23:67–72

    Google Scholar 

  • Hallauer AR (2011) Evalution of plant breeding. Crop Breed Appl Biotechnol 11:197–206

    Article  Google Scholar 

  • Helgeson JP, Pohlman JD, Austin S et al (1998) Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. Theor Appl Genet:738–742

    Google Scholar 

  • Huang BE, George AW, Forrest KL et al (2012) A multi parent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  • IAEA (2015) IAEA mutant database. International Atomic Energy Agency, Vienna (Accessed July 2015) Available from: http://mvd.iaea.org/

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tiss Org Cult 82:113–123

    Article  CAS  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (2002) Molecular techniques in crop improvement. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Jansen R (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi SP, Prabhakar K, Ranjekar PK et al (2011) Molecular markers in plant genome analysis. http/www.ias.ac.in/currsci/jul25/articles 15 htm pp 1–19

  • Keller WA, Amison PG, Cardy B (1987) Haploids from gametophytic cells-recent developments and future prospects. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R. Liss, New York, pp 223–241

    Google Scholar 

  • Khadijeh D, Seyed Hossein MA, Masoumeh K et al (2015) DNA microarray, types and its application in medicine. Sch Acad J Biosci 3(7):598–602

    Google Scholar 

  • Koebner RMD, Miller TE, Snape JW et al (1988) Wheat endopeptidase: genetic control, polymorphism, intrachromosomal gene location and alien variation. Genome 30:186–192

    Article  Google Scholar 

  • Kumari N, Thakur SK (2014) Randomly amplified polymorphic DNA – a brief review. Am J Anim Vet Sci 9(1):6–13

    Article  CAS  Google Scholar 

  • Labana S, Pandey G, Paul D et al (2005) Plot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337

    Article  CAS  PubMed  Google Scholar 

  • Lammerts van Bueren ET, Backes G, de Vriend H et al (2010) The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 175:51–64

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YI, Lee IS, Lim YP (2002) Variation in potato regenerates from gamma-rays irradiated embryogenic callus. J Plant Biotech 4:163–170

    Google Scholar 

  • Luo ZW, Wu CI, Kearsey MJ (2002) Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 161:915–929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Ricci A, Salvi S et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663

    Article  CAS  PubMed  Google Scholar 

  • Mackill DJ, Nguyen HT, Zhang J (1999) Use of molecular markers in plant improvement programs for rain fed lowland rice. Field Crop Res 64:177–185

    Article  Google Scholar 

  • Maluszynski M, Nichterlein K, van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties-the FAO/IAEA database. Mut Breed Rev 12:1–84

    Google Scholar 

  • Marica S (2008) The use of molecular markers for analyzing genes and genomes of livestock. Univerita deglistuidipadova, Padova

    Google Scholar 

  • Marmur J, Doty P (1961) Thermal renaturation of deoxyribonucleic acids. J Mol Biol 3:585–594

    Article  CAS  PubMed  Google Scholar 

  • Mattick J (2008) The human genome as an RNA machine. Febit Science LoungeWebinar June 12

    Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3(1):200–231

    Article  Google Scholar 

  • Mba C, Afza R, Bado S et al (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 111–130

    Chapter  Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micke A (1987) Induced mutations for crop improvement – a review. Trop Agri (Trinidad) 4(1987):259–278

    Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  PubMed  Google Scholar 

  • Minocha JL, Arnason TJ (1962) Mutagenic effectiveness of ethyl methane sulfonate in barley. Nature 196:499

    Article  CAS  Google Scholar 

  • Mlcochova L, Chloupek O, Uptmoor R et al (2004) Molecular analysis of the barley cv. ‘Valticky’ and its Xray derived semidwarf mutant ‘Diamant’. Plant Breed 123:421–427

    Article  CAS  Google Scholar 

  • Mohan Jain S (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–105

    Google Scholar 

  • Monnier M (1978) Culture of zygotic embryos. In: Thorpe TA (ed) Frontiers of plant tissue culture (1978). Univ of Calgary Press, Calgary, pp 277–286

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution – grasses line up and form a circle. Curr Biol 5:737–739

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison RA, Evans DA (1988) Haploid plants from tissue culture: new plant varieties in a shortened time frame. Biotech 6:684–690

    Google Scholar 

  • Norstog K (1979) Embryo culture as a tool in the study of comparative and developmental morphology. In: Sharp WR, Larsen PO, Paddock EF, Raghavan V (eds) Plant cell tissue culture. Ohio State Univ Press, Columbus, pp 179–202

    Google Scholar 

  • Novak FJ, Brunner H (1992) Plant breeding: induced mutation technology for crop improvement. IAEA Bull 4:25–33

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  • Pathirana R (2012) Plant mutation breeding in agriculture. In: Hemming D (ed) Plant sciences reviews. CABI, Cambridge, pp 107–125

    Google Scholar 

  • Perez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RL (2010) Mobilizing science to break yield barriers. Crop Sci 50:S99–S108

    Article  Google Scholar 

  • Phillips RL, Vasil IK (2001) DNA-based markers in plants. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer Academic Press, Dordrecht, p 497

    Chapter  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Ponder BA (2001) Cancer genetics. Nature 411:336–341

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Tren Genet 9(8):275–280

    Article  CAS  Google Scholar 

  • Raghavan V (1980) Embryo culture In Vasil IK (ed.). Perspectives in plant cell and tissue culture. Intl. Rev. Cytol., Suppl. 11B. Academic, New York. p. 209–240.

    Google Scholar 

  • Rahimi M, Dehghani H, Rabiei B et al (2012) Multi-trait mapping of QTLs for drought tolerance indices in rice. Cereal Res (in Farsi) 2(2):107–121

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst 29:467–501

    Article  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quina-crine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York, pp 149–187

    Chapter  Google Scholar 

  • Roychowdhury R, Datta S, Gupta P et al (2012) Analysis of genetic parameters on mutant populations of mungbean (Vigna radiata L.) after ethyl methane sulphonate treatment. Not Sci Biol 4(1):137–143

    CAS  Google Scholar 

  • Schena M (1998) Microarrays: biotechnology’ discovery platform for functional genomics. Trends Biotechnol 16(7):301–306

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop N (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568

    CAS  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Principles and applications of plant mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 301–325

    Chapter  Google Scholar 

  • Slafer GA, Araus JL, Royo C et al (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Sleper and Poehlman (1995) Breeding field crops. 3check

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Sundberg SA, Chow A, Nikiforov T et al (2001) Microchip-based systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 14(1):1–12

    Article  Google Scholar 

  • Tadele Z, Chikelu MBA, Bradely JT (2010) TILLING for mutations in model plants and crops. In: Jain, Brar DS (eds) Molecular Techniques in crop improvement, pp 307–332

    Google Scholar 

  • Thommen A (2008) Brauchen wir Bio-Kohl aus Protoplastenfusion? BNN-Nachrichten

    Google Scholar 

  • Thurling N, Depittayanan V (1992) EMS induction of early flowering mutants in spring rape (Brassica napus). Plant Breed 108:177–184

    Article  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high- throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trethowan RM, Reynolds M, Sayre K, Ortiz Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:405–413

    Article  Google Scholar 

  • Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C, Sharkey M, Caboche M, Sturbois B, Bendahmane A (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and EcoTILLING in plants. BMC Mol Biol 9:9

    Article  CAS  Google Scholar 

  • United Nations (2007) World population prospects, the 2006 revision. United Nations Depart Eco Social Affairs, New York

    Google Scholar 

  • Varshney RK, Dubey A (2009) Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biotechnol 18:127–138

    Article  CAS  Google Scholar 

  • Varshney RK et al (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Vassel SK (2001) High quality protein corn. In: Hallauer AR (ed) Specialty corns. CRC Press, Boca Raton, pp 85–129

    Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber APM et al (2007) Sampling the Arabidopsis transcriptomes with massively parallel pyrosequencing. Plant Physiol 144:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T et al (2006) Sequencing put to the test using the complex genome of barley. BMC Genomics 7:275

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ et al (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Google Scholar 

  • Winzeler H, Schmid J, Fried PM (1987) Field performance of androgenetic doubled haploid spring wheat line in comparison with line selected by the pedigree system. Plant Breed 99:41–48

    Article  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially. DNA Res 16(3):141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GP, Saghai Maroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Mol Gen Genet 245:187–194

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob M, Rashid A (2001) online. J Biol Sci 1:805–808

    Article  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yasmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasmin, K., Arulbalachandran, D., Jothimani, K., Soundarya, V., Vanmathi, S. (2017). Insights of Novel Breeding Strategies in Sustainable Crop Production. In: Dhanarajan, A. (eds) Sustainable Agriculture towards Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-6647-4_3

Download citation

Publish with us

Policies and ethics