Skip to main content

Beneficial Plant-Microbes Interactions: Biodiversity of Microbes from Diverse Extreme Environments and Its Impact for Crop Improvement

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Microbes are capable of colonizing the rhizosphere and phyllosphere as well as living inside the plant tissues as endophytes. The microbiomes associated with the crops have the ability to produce phytohormones (indoleacetic acid and gibberellic acid); solubilize (phosphorus, potassium and zinc) and bind nutrients, besides eliciting plant defence reactions against pathogens; and also help in plant growth under harsh environments. The biodiversity of plant growth-promoting (PGP) microbes have been illustrated by different genera and species and their mechanisms of action for the following different phyla of domain Archaea, Bacteria and Eukarya:Actinobacteria,Ascomycota,Bacteroidetes,Basidiomycota,Crenarchaeota,Euryarchaeota,Firmicutes andProteobacteria (α/β/γ/δ). This book chapter intends to present research results obtained so far concerning the application of beneficial microbes as PGP microbes and their potential biotechnological application to increase the plant growth and yields and soil health. The diverse range of activities as well as the number of microbes sorted out in different culture collections around the world, may provide an important resource to rationalize the use of chemical fertilizers in agriculture. There are many microbial species that act as PGP microbes, described in the literature as successful for improving plant growth and health. However, there is a gap between the mode of action/mechanism of the PGP microbes for plant growth and the role of the PGP microbes as biofertilizers. Hence, this book chapter bridges the gap mentioned and summarizes the mechanism of PGP microbes as biofertilizers for agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15:77–86

    Article  Google Scholar 

  • Araújo JM, Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43:447–451

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano J (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms – a review. In: Aroca R, Ruiz-Lozano JM (eds) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Dordrecht, pp 121–135

    Chapter  Google Scholar 

  • Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement byAzospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62:173–181

    Article  CAS  PubMed  Google Scholar 

  • Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots ofZea mays L. Microb Ecol 4:252–263

    Article  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ (2000) Root colonization by phenazine-1-carboxamide-producing bacteriumPseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced byPseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought inArabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choudhury A, Kennedy I (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czaban J, Wróblewska B (2017) The Effect of bentonite on the survival ofAzotobacter chroococcum in sandy soil in a long-term plot experiment. Polish J Environ Stud 26:1–8

    Article  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megías M (2008) Effect ofAzospirillum brasilense coinoculated withRhizobium onPhaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • de Bruijn F, Stoltzfus J, So R, Malarvithi P, Ladha J (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • de la Vega M, Sayago A, Ariza J, Barneto AG, León R (2016) Characterization of a bacterioruberin producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol Prog 32:592–600

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562

    Article  PubMed  PubMed Central  Google Scholar 

  • Deepa C, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol 26:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced byStreptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophicMethylobacterium spp. Biomed Res Int 2015.https://doi.org/10.1155/2015/909016

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by aHerbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis J (2017) Can plant microbiome studies lead to effective biocontrol of plant diseases? Mol Plant Microbe In.https://doi.org/10.1094/MPMI-12-16-0252-CR

  • Errakhi R, Bouteau F, Barakate M, Lebrihi A (2016) Isolation and characterization of antibiotics produced byStreptomyces J-2 and their role in biocontrol of plant diseases, especially grey mould. In: Biocontrol of major grapevine diseases: leading research, CABI, p 76

    Google Scholar 

  • Feliatra F, Lukistyowati I, Yoswaty D, Rerian H, Melina D, Hasyim W, Nugroho TT, Fauzi AR, Yolanda R (2016) Phylogenetic analysis to compare populations of acid tolerant bacteria isolated from the gastrointestinal tract of two different prawn speciesMacrobrachium rosenbergii andPenaeus monodon. AACL Bioflux 9:360–368

    Google Scholar 

  • Florentino AP, Brienza C, Stams AJ, Sánchez-Andrea I (2016)Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int J Syst Evol Microbiol 66:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence ofHalolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5, e01593-01516,https://doi.org/10.1128/genomeA.01593-16

    Article  Google Scholar 

  • Garbeva P, Van Veen J, Van Elsas J (2003) PredominantBacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Khakvar R, Niknam G (2014) Introduction of some new endophytic bacteria fromBacillus andStreptomyces genera as successful biocontrol agents againstSclerotium rolfsii. Arch Phytopathol Plant Prot 47:122–130

    Article  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E (2016)Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332,https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, London

    Book  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick B, Patten C, Holguin G, Penrose D (1999a) Overview of plant growth-promoting bacteria. In: Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 1–13

    Chapter  Google Scholar 

  • Glick BR, Patten C, Holguin G, Penrose D (1999b) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gupta G, Panwar J, Jha PN (2013) Natural occurrence ofPseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizingPennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hajieghrari B, Mohammadi M (2016) Growth-promoting activity of indigenousTrichoderma isolates on wheat seed germination, seedling growth and yield. Aust J Crop Sci 10:13391347

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamdia MAE-S, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects ofAzospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hariprasad P, Niranjana S (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Hassen AI, Labuschagne N (2010) Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol 26:1837–1846

    Article  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Biol 45:197–209

    Article  CAS  Google Scholar 

  • Holland MA, Davis R, Moffitt S, O’Laughlin K, Peach D, Sussan S, Wimbrow L, Tayman B (2000) Using “leaf prints” to investigate a common bacterium. Am Biol Teach 62:128–131

    Article  Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101

    Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    Article  PubMed  Google Scholar 

  • Inderiati S, Franco CM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res Trop Reg 1:1–6

    Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided byKlebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Ivanova E, Doronina N, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    Article  CAS  Google Scholar 

  • Ivanova E, Pirttilä A, Fedorov D, Doronina N, Trotsenko Y (2008) Association of methylotrophic bacteria with plants: metabolic aspects. Prospects and applications for plant-associated microbes a laboratory manual, part A: bacteria Biobien Innovations, Turku, pp 225–231

    Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminaseproducing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  • Jensen H (1965) Nonsymbiotic nitrogen fixation In: Soil nitrogen, pp 436–480

    Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    Article  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacteriumAchromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621

    Article  CAS  PubMed  Google Scholar 

  • Jiménez DJ, Montaña JS, Martínez MM (2011) Characterization of free nitrogen fixing bacteria of the genusAzotobacter in organic vegetable-grown Colombian soils. Braz J Microbiol 42:846–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kämpfer P, Glaeser SP, McInroy JA, Busse H-J (2016)Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 66:1869–1874

    Article  PubMed  CAS  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir Z (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH (2008) Plant growth promotion andPenicillium citrinum. BMC Microbiol 8:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, ur Rehman S, Kim J-G, Lee I-J (2012) Pure culture ofMetarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017) Drought tolerant phosphorus solubilizing microbes: diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceeding of national conference on advances in food science and technology, p 166

    Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma A, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014a) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64(2):741–751

    Article  CAS  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014b) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:127,http://dx.doi.org/10.4172/ijbbd.1000127

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017)β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Article  CAS  PubMed  Google Scholar 

  • Lavania M, Chauhan P, Chauhan SVS, Singh H, Nautiyal C (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteriaSerratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lenart A (2012) Occurrence characteristics and genetic diversity ofAzotobacter chroococcum in various soils of Southern Poland. Pol J Environ Stud 21:415–424

    Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lim J-H, Kim S-D (2013) Induction of drought stress resistance by multi-functional PGPRBacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophyticStreptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhai L, Wang R, Zhao R, Zhang X, Chen C, Cao Y, Cao Y, Xu T, Ge Y, Zhao J, Cheng C (2015)Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 65:4533–4538

    Article  CAS  PubMed  Google Scholar 

  • Mano H, Morisaki H (2007) Endophytic bacteria in the rice plant. Microb Environ JSME 23:109–117

    Article  Google Scholar 

  • Marag PS, Priyanka, Yadav AN, Shukla L, Suman A (2015) Endophytic bacterial population in composite and hybrid maize (Zea mays L.) and their potential role in plant growth promotion. In: Proceeding of 56th annual conference of association of microbiologists of India & International symposium on “Emerging discoveries”. doi:10.13140/RG.2.1.3810.6964

  • Martyniuk S, Martyniuk M (2003) Occurrence ofAzotobacter spp. in some Polish soils. Polish J Environ Stud 12:371–374

    CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwen 101:777–786

    Article  CAS  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen,Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacteriumPseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Joshi P, Bisht SC, Bisht JK, Selvakumar G (2011a) Cold-tolerant agriculturally important microorganisms. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 273–296,https://doi.org/10.1007/978-3-642-13612-2_12

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011b) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513

    Google Scholar 

  • Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effectsin vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28:2229–2241

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activitiesin vitro. Microbiol Res 164:290–296

    Article  CAS  PubMed  Google Scholar 

  • Narula S, Anand R, Dudeja S, Pathak D (2013) Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legum Res 36:344–350

    Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeastWilliopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002a) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Inst 2:1117–1142

    Google Scholar 

  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Pankievicz V, Amaral FP, Santos KF, Agtuca B, Xu Y, Schueller MJ, Arisi ACM, Steffens M, Souza EM, Pedrosa FO (2015) Robust biological nitrogen fixation in a model grass–bacterial association. Plant J 81:907–919

    Article  CAS  PubMed  Google Scholar 

  • Park K-H, Lee O-M, Jung H-I, Jeong J-H, Jeon Y-D, Hwang D-Y, Lee C-Y, Son H-J (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerantBurkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–955

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Rexer K-H, Kost G, Luis P, Kaldorf M (2008) Interaction ofPiriformospora indica with diverse microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin/Heidelberg, pp 237–265,https://doi.org/10.1007/978-3-540-74051-3_15

    Chapter  Google Scholar 

  • Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophytePseudomonas stutzeri A15. Arch Microbiol.https://doi.org/10.1007/s00203-016-1332-3

  • Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N (2015) Preferential association of endophyticBradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 81:3049–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purnawati A (2014) Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Trop Life Sci 4:33–36

    Article  Google Scholar 

  • Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwen 81:537–547

    Article  CAS  Google Scholar 

  • Rabie G, Almadini A (2005) Role of bioinoculants in development of salt-tolerance ofVicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Ramesh M, Lonsane B (1987) A novel bacterial thermostable alpha-amylase system produced under solid state fermentation. Biotechnol Lett 9:501–504

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen,Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th AMI-2016 and international symposium on “Microbes and Biosphere: What’s New What’s Next” p 453

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI & the symposium on “Science, technology and entrepreneurship for human welfare in The Himalayan Region”, p 80

    Google Scholar 

  • Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, p 41

    Google Scholar 

  • Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2014) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266

    Article  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Rawat L, Bisht TS, Kukreti A, Prasad M (2016) Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum L.). Mol Soil Biol 7:1–15,https://doi.org/10.5376/msb.2016.07.0004

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102

    Article  Google Scholar 

  • Reis VM, Teixeira KRS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55:931–949

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saikia S, Jain V, Khetrapal S, Aravind S (2007) Dinitrogen fixation activity ofAzospirillum brasilense in maize (Zea mays). Curr Sci 93:1296–1300

    CAS  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol M 55:74–81

    Article  CAS  Google Scholar 

  • Saxena AK, Kaushik R, Yadav AN, Gulati S, Sharma D (2015a) Role of Archaea in sustenance of plants in extreme saline environments. In: Proceeding of 56th AMI-2015 & international symposium on “Emerging Discoveries in Microbiology”. doi:10.13140/RG.2.1.2073.9925

  • Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015b) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: Proceeding of 56th international conference on “Low temperature science and biotechnological advances”, p 114. doi:10.13140/RG.2.1.2853.5202

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Sehgal S, Gibbons N (1960) Effect of some metal ions on the growth ofHalobacterium cutirubrum. Can J Microbiol 6:165–169

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011)Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerantPseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362

    Article  CAS  Google Scholar 

  • Shah DA, Sen S, Shalini A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secretingPseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance inArabidopsis thaliana. Rhizosphere 3:16–19

    Article  Google Scholar 

  • Shanker AK, Maheswari M, Yadav S, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Function Integ Genom 14:11–22

    Article  CAS  Google Scholar 

  • Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Poll 156:1164–1170

    Article  CAS  Google Scholar 

  • Shivaji S, Shyamala Rao N, Saisree L, Sheth V, Reddy G, Bhargava PM (1988) Isolation and identification ofMicrococcus roseus andPlanococcus sp. from Schirmacher Oasis, Antarctica. J Biosci 13:409–414

    Article  Google Scholar 

  • Shivaji S, Rao NS, Saisree L, Reddy G, Kumar GS, Bhargava P (1989) Isolates ofArthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229

    Article  Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J Appl Biol Biotechnol 4:30–37

    Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic moldSporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophicArthrobacter agilis strain L77. Stand Genom Sci 11:54.https://doi.org/10.1186/s40793-016-0176-4

    Article  Google Scholar 

  • Srivastava AK, Kumar S, Kaushik R, Saxena AK, Padaria JC, Gupta A, Pal KK, Gujar GT, Sharma A, Singh P (2014) Diversity analysis ofBacillus and other predominant genera in extreme environments and its utilization in Agriculture. Technical report, 414402/C30026. doi:10.13140/2.1.1357.3927

  • Steenhoudt O, Vanderleyden J (2000)Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stella M, Halimi M (2015) Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. J Trop Agric and Fd Sc 43:41–53

    Google Scholar 

  • Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17:39–45

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016a) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial Inoculants in sustainable agricultural productivity, vol 1, Research Perspectives. Springer India, New Delhi, pp 117–143,https://doi.org/10.1007/978-81-322-2647-5_7

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016b) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol Appl Sci 5:890–901

    Article  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70:305–313

    Article  CAS  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Exp 4:26

    Article  CAS  Google Scholar 

  • Tabatabaei S, Ehsanzadeh P, Etesami H, Alikhani HA, Glick BR (2016) Indole-3-acetic acid (IAA) producingPseudomonas isolates inhibit seed germination andα-amylase activity in durum wheat (Triticum turgidum L.) Spanish J Agric Res 14:0802

    Article  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.) World J Microbiol Biotechnol 30:719–725

    Article  CAS  PubMed  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  CAS  Google Scholar 

  • Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2:224–233

    Article  CAS  Google Scholar 

  • Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soil 47:907

    Article  CAS  Google Scholar 

  • Tripathi A, Singh GS (2013) Perception, anticipation and responses of people to changing climate in the Gangetic Plain of India. Curr Sci 105:1673

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Uleberg E, Hanssen-Bauer I, van Oort B, Dalmannsdottir S (2014) Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Clim Chang 122:27–39

    Article  Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Review Phytopathol 36:453–483

    Article  Google Scholar 

  • Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J General Microbiol 128:1959–1968

    Google Scholar 

  • Verma P (2015) Genotypic and functional characterization of wheat associated microflora from different agro-ecological zones. Ph.D. Thesis. National Institute of Technology, Durgapur and Indian Agricultural Research Institute, New Delhi, pp 152

    Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2015a) Plant growth promotion and mitigation of cold stress in inoculated wheat (Triticum aestivum L.) by K-solubilizing psychrotolerantMethylobacterium phyllosphaerae strain IARI-HHS2-67. In: Proceeding of international conference on “Low Temperature Science and Biotechnological Advances” doi:10.13140/RG.2.1.4885.1362

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015b) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Alleviation of cold stress in wheat seedlings byBacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci.https://doi.org/10.1016/j.sjbs.2016.01.042

  • Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK (2017) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Sustainable termite management, Springer International. doi:https://doi.org/10.1007/978-3-319-68726-1_9

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescentPseudomonas. BMC Microbiol 9:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescentPseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol 58:425–434

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ke X, Wu L, Lu Y (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32:27–36

    Article  CAS  PubMed  Google Scholar 

  • Wei C-Y, Lin L, Luo L-J, Xing Y-X, C-J H, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixingKlebsiella variicola strain DX120E promotes sugarcane growth. Biol Fert Soil 50:657–666

    Google Scholar 

  • Wellner S, Lodders N, Kämpfer P (2011) Diversity and biogeography of selected phyllosphere bacteria with special emphasis onMethylobacterium spp. Syst Appl Microbiol 34:621–630

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacteriumPseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producingBacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. thesis. Birla Institute of Technology, Mesra, Ranchi and Indian Agricultural Research Institute, New Delhi, pp 234. doi:10.13140/RG.2.1.2948.1283/2

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2013) Genetic and functional diversity of fluorescentPseudomonas from rhizospheric soils of wheat crop. J Basic Microbiol 54:425–437

    Article  PubMed  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Kaushik R, Saxena AK (2014) Cold tolerant microbes from Indian Himalayas: diversity and potential applications in biotechnology and agriculture. In: Proceeding of 84th annual session of NASI and symposium on “Desert Science-Opportunities and Challenges” p 17

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693,https://doi.org/10.1016/j.jbiosc.2014.11.006

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108,https://doi.org/10.1007/s11274-014-1768-z

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293.https://doi.org/10.1038/srep12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Saxena AK (2015d) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2015e) Microbes mediated alleviation of cold stress for growth and yield of wheat (Triticum aestivum L.). In: Proceeding of international conference on “Low Temperature Science and Biotechnological Advances” doi:10.13140/RG.2.1.2374.2883

  • Yadav AN, Rana KL, Kumar V, Dhaliwal HS (2016a) Phosphorus solubilizing endophytic microbes: potential application for sustainable agriculture. EU Voice 2:21–22

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016b) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016c) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 52:142–150

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2016d) Microbiome of Indian Himalayan regions: molecular diversity, phylogenetic profiling and biotechnological applications. In: Proceeding of 86th annual session of NASI & the symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, p 58

    Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4. doi:10.26717/BJSTR.2017.01.000321

    Google Scholar 

  • Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017a) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. doi:10.19080/IJESNR.2017.03.555601

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Neha P, Gupta VK, Saxena AK (2017d) Biodiversity of the genusPenicillium in different habitats. In: Gupta V, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, USA, pp 3–18. doi:10.1016/B978-0-444-63501-3.00001-6

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017e) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017f) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16. doi:10.19080/AIBM.2017.05.555671

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium,Bacillus subtilis CAS15, has a biocontrol effect onFusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control againstVerticillium wilt disease. PLoS One 12:e0170557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002)Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungiTrichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci doi:https://doi.org/10.3389/fpls.2016.01405

Download references

Acknowledgement

The authors duly acknowledge the Department of Biotechnology, Govt. of India, for the financial support provided (Grant No. BT/AGR/BIOFORTI/PHII/NIN/2011); Ministry of Food Processing Industries (MoFPI), Govt. of India, grant for the infrastructural facility development (F.No. 5-11/2010-HRD); and Vice Chancellor, Eternal University, for providing the motivation and research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Yadav, A.N., Kumar, V., Singh, D.P., Saxena, A.K. (2017). Beneficial Plant-Microbes Interactions: Biodiversity of Microbes from Diverse Extreme Environments and Its Impact for Crop Improvement. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22

Download citation

Publish with us

Policies and ethics