Skip to main content

Nano-grooving by Using Multi-tip Diamond Tools

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Part of the book series: Micro/Nano Technologies ((MNT,volume 1))

Abstract

This chapter introduces nano-grooving approach by using multi-tip diamond tools to generate nanostructures such as nano-gratings/nano-grooves on large substrates. It starts by briefing the work principle and history of this nanofabrication approach. It then introduces the machining mechanism, influences of processing parameters, and tool wear on the machined nanostructures. It concludes with a summary of research challenges, current research achievements, and future research directions to systematically establish this nanofabrication approach.

This is a preview of subscription content, log in via an institution.

References

  • Akimov YA, Koh W (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201

    Article  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  • Balamane H, Halicioglu T, Tiller W (1992) Comparative study of silicon empirical interatomic potentials. Phys Rev B 46:2250

    Article  Google Scholar 

  • Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K et al (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61:635–655

    Article  Google Scholar 

  • Berman D, Krim J (2013) Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices. Prog Surf Sci 88:171–211

    Article  Google Scholar 

  • Cheng K, Luo X, Ward R, Holt R (2003) Modeling and simulation of the tool wear in nanometric cutting. Wear 255:1427–1432

    Article  Google Scholar 

  • Clark AW, Cooper JM (2011) Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 7:119–125

    Article  Google Scholar 

  • Davies MA, Evans CJ, Vohra RR, Bergener, BC, Patterson SR (2003) Application of precision diamond machining to the manufacture of microphotonics components. In: Proceedings of SPIE, 2003

    Google Scholar 

  • Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310

    Article  Google Scholar 

  • Ding X, Lim G, Cheng C, Butler DL, Shaw K, Liu K et al (2008) Fabrication of a micro-size diamond tool using a focused ion beam. J Micromech Microeng 18:075017

    Article  Google Scholar 

  • Ding X, Jarfors A, Lim G, Shaw K, Liu K, Tang L (2012) A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precis Eng 36:141–152

    Article  Google Scholar 

  • Fang TH, Weng CI, Chang JG (2002) Molecular dynamics simulation of nano-lithography process using atomic force microscopy. Surf Sci 501:138–147

    Article  Google Scholar 

  • Friedrich CR, Vasile MJ (1996) Development of the micromilling process for high-aspect-ratio microstructures. J Microelectromech Syst 5:33–38

    Article  Google Scholar 

  • Friedrich C, Coane P, Vasile MJ (1997) Micromilling development and applications for microfabrication. Microelectron Eng 35:367–372

    Article  Google Scholar 

  • Holmberg S, Perebikovsky A, Kulinsky L, Madou M (2014) 3-D Micro and nano technologies for improvements in electrochemical power devices. Micromachines 5:171–203

    Article  Google Scholar 

  • Ikawa N, Shimada S, Tanaka H, Ohmori G (1991a) An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. CIRP Ann Manuf Technol 40:551–554

    Article  Google Scholar 

  • Ikawa N, Donaldson R, Komanduri R, König W, McKeown P, Moriwaki T et al (1991b) Ultraprecision metal cutting – the past, the present and the future. CIRP Ann Manuf Technol 40:587–594

    Article  Google Scholar 

  • Kaur IP, Singh H (2014) Nanostructured drug delivery for better management of tuberculosis. J Control Release 184:36–50

    Article  Google Scholar 

  • Kawasegi N, Niwata T, Morita N, Nishimura K, Sasaoka H (2014a) Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam. Precis Eng 38:174–182

    Article  Google Scholar 

  • Kawasegi N, Ozaki K, Morita N, Nishimura K, Sasaoka H (2014b) Single-crystal diamond tools formed using a focused ion beam: tool life enhancement via heat treatment. Diam Relat Mater 49:14–18

    Article  Google Scholar 

  • Kelchner CL, Plimpton S, Hamilton J (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085

    Article  Google Scholar 

  • Komanduri R, Chandrasekaran N, Raff L (2000) Molecular dynamics simulation of atomic-scale friction. Phys Rev B 61:14007

    Article  Google Scholar 

  • Komanduri R, Chandrasekaran N, Raff L (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989–2019

    Article  Google Scholar 

  • Lin Z, Huang J (2008) A study of the estimation method of the cutting force for a conical tool under nanoscale depth of cut by molecular dynamics. Nanotechnology 19:115701

    Article  Google Scholar 

  • Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729

    Article  Google Scholar 

  • Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435:929–932

    Article  Google Scholar 

  • Luo X, Tong Z, Liang Y (2014) Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures. Appl Surf Sci 321:495–502

    Article  Google Scholar 

  • Mokkapati S, Beck F, Polman A, Catchpole K (2009) Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett 95:053115

    Article  Google Scholar 

  • Neugebauer R, Drossel W, Wertheim R, Hochmuth C, Dix M (2012) Resource and energy efficiency in machining using high-performance and hybrid processes. Procedia CIRP 1:3–16

    Article  Google Scholar 

  • Norouzifard V, Hamedi M (2014) Experimental determination of the tool–chip thermal contact conductance in machining process. Int J Mach Tools Manuf 84:45–57

    Article  Google Scholar 

  • Pei Q, Lu C, Lee H, Zhang Y (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4:444–451

    Article  Google Scholar 

  • Pelaz L, Marqués LA, Barbolla J (2004) Ion-beam-induced amorphization and recrystallization in silicon. J Appl Phys 96:5947–5976

    Article  Google Scholar 

  • Picard YN, Adams D, Vasile M, Ritchey M (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27:59–69

    Article  Google Scholar 

  • Smith R, Kenny SD, Ramasawmy D (2004) Molecular dynamics simulations of sputtering. Philos Trans R Soc London, Ser A 362:157–176

    Article  Google Scholar 

  • Sun J, Luo X (2014) Chapter 7: deterministic fabrication of micro-and nanostructures by focused ion beam. In: Wang ZM (ed) Lecture notes in nanoscale science and technology. Springer, New York, pp 161–204

    Google Scholar 

  • Sun J, Luo X, Chang W, Ritchie J, Chien J, Lee A (2012) Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips. J Micromech Microeng 22:115014

    Article  Google Scholar 

  • Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566

    Article  Google Scholar 

  • Tong Z, Liang Y, Jiang X, Luo X (2014a) An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools. Appl Surf Sci 290:458–465

    Article  Google Scholar 

  • Tong Z, Liang Y, Yang X, Luo X (2014b) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools. Int J Adv Manuf Technol 74:1709–1718

    Article  Google Scholar 

  • Tong Z, Luo X, Sun J (2015a) Investigation of a scale-up manufacturing approach for nanostructures by using a nanoscale multi-tip diamond tool. Int J Adv Manuf Technol 80(1-4):699–710

    Article  Google Scholar 

  • Tong Z, Xu Z, Wu W, Luo X (2015b) Molecular dynamics simulation of low-energy FIB radiation induced damage in diamond. Nucl Inst Methods Phys Res B 358:38–44

    Article  Google Scholar 

  • Vasile MJ, Friedrich CR, Kikkeri B, McElhannon R (1996) Micrometer-scale machining: tool fabrication and initial results. Precis Eng 19:180–186

    Article  Google Scholar 

  • Vasile MJ, Nassar R, Xie J, Guo H (1999) Microfabrication techniques using focused ion beams and emergent applications. Micron 30:235–244

    Article  Google Scholar 

  • Xu Z, Fang F, Zhang S, Zhang X, Hu X, Fu Y et al (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18:8025–8032

    Article  Google Scholar 

  • Yan Y, Sun T, Dong S, Liang Y (2007) Study on effects of the feed on AFM-based nano-scratching process using MD simulation. Comput Mater Sci 40:1–5

    Article  Google Scholar 

  • Ye Y, Biswas R, Morris J, Bastawros A, Chandra A (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390

    Article  Google Scholar 

  • Zhang S, Fang F, Xu Z, Hu X (2009) Controlled morphology of microtools shaped using focused ion beam milling technique. J Vac Sci Technol B 27:1304–1309

    Article  Google Scholar 

  • Zhu PZ, Hu YZ, Ma TB, Wang H (2010) Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci 256:7160–7165

    Article  Google Scholar 

  • Zong W, Li Z, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tools Manuf 50:411–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichun Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Luo, X., Tong, Z. (2018). Nano-grooving by Using Multi-tip Diamond Tools. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-6588-0_4-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6588-0_4-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6588-0

  • Online ISBN: 978-981-10-6588-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nano-grooving by Using Multi-tip Diamond Tools
    Published:
    17 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_4-2

  2. Original

    Nano-grooving by Using Multi-tip Diamond Tools
    Published:
    10 February 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_4-1