Skip to main content

Phytostimulating Mechanisms and Bioactive Molecules of Trichoderma Species: Current Status and Future Prospects

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Ever-increasing pressure on the agricultural land due to various biotic and abiotic stresses made agriculture a nonprofitable venture. In order to bring back the lost glory to agriculture, there is an urgent need to reclaim this eroded agriculture with sustainable practices, one among them is the use of plant growth-promoting microorganisms such as rhizosphere-competent Trichoderma sp. In this chapter, the major mechanisms and bioactive molecules involved in plant growth promotory activity of Trichoderma sp. are described in detail. Trichoderma sp. is also known to produce growth-regulating phytohormones and other bioactive molecules which are known to protect them against antimicrobial compounds secreted by plant, but they also help the plants in overcoming various stresses. Various hydrolytic enzymes such as chitinases, glucanases, and proteinases are produced by Trichoderma which aid in its mycoparasitic response. The fungus is also able to enhance plant growth through nutrient solubilization and its uptake. It mobilizes phosphates from fixed organic/inorganic phosphorus sources through both enzymatic (phosphatases, phytases) and nonenzymatic mechanisms (production of organic acids and siderophores). Trichoderma produces a wide array of secondary metabolites and volatile compounds which are mainly responsible for its biocontrol action. Suppression of fungal plant pathogens through mycoparasitism involves signal transduction and G protein signaling in Trichoderma. Secondary metabolites and volatile compounds produced by this fungus are very diverse in their occurrence and mode of action against phytopathogens. Recent developments in molecular biology, metabolomics, and proteomics have opened an insight for the use of secondary metabolites as biopesticides rather than the application of whole organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    Google Scholar 

  • Ali SS, Vidhale NN (2013) Bacterial siderophore and their application. J Curr Microbiol App Sci 2(12):303–312

    Google Scholar 

  • Anke H, Kinn J, Berquist KE, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma-isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol Met 4:176–180

    Google Scholar 

  • Aowson SJ, Davis RP (1983) Production of phytate hydrolyzing enzyme by some fungi. Enzym Microb Technol 5(5):377–382

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224(6):1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113(12):1365–1376

    Article  PubMed  Google Scholar 

  • Benitez T, Rincon MCL, Codon AC (2004) Biocontrol mechanism of Trichoderma strains. Int Microbiol 7:249–260

    Google Scholar 

  • Bolker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25(3):143–156

    Google Scholar 

  • Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667

    Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147(2):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma Amazonicum, a new endophytic species on Hevea Brasiliensis and H. Guianensis from the Amazon basin. Mycologia 103(1):139–151

    Article  PubMed  Google Scholar 

  • Chet I (1987) Trichoderma: application, mode of action and potential as a biocontrol agent of soil borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27(6):503–514

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • Daniel JF, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141

    Google Scholar 

  • de Almeida RP, van Lenteran JE, Stouthames R (2010) Does wolbachia behavior? Braz J Biol 70:435–442

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47(2):55–64

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Fankem HD, Niwaga A, Deubel L, Dieng W, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaus guingenesis) rhizosphere in Cameroon. African J Biotech 5:2450–2460

    Google Scholar 

  • Gaind S, Guar AC (1991) Thermotolerant phosphate solublizing microorganisms and their interaction with mung bean. Plant Soil 133:141–149

    Google Scholar 

  • Gaur AC, Sachar S (1980) Effect of rock phosphate and glucose concentration on phosphate solublization by Aspergillus awamori. Curr Sci 49:553–554

    Google Scholar 

  • Gaur AC (1990) Phosphate solublizing microorganisms as biofertilizer. Omega Scientific Publishers, New Delhi, p 176

    Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabo lites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacerial solubilization of mineral phosphate: historical perspectives and future prospects. Am J Altern Agric 1:57–65

    Google Scholar 

  • Goldstein AH (1996) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and moleular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gutkind JS (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17(11 Reviews):1331–1342

    Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh lJ (1998). Effect of buffering on the phosphate solubilizing ability of micro-organisms Microbiol Biotechnol14(5):699–673

    Google Scholar 

  • Harman GE (1991) Seed treatments for biological control of plant disease. Crop Prot 10(3):166–171

    Article  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84(4):377–393

    Article  Google Scholar 

  • Harman GE (2002) Trichoderma sp including T. harzinium,T. viridae, T. koningii, T. hamatum and other sp. Deutoromycetes, Monnilaes (Asexual classification system). In: Biological Control. Cornell University, Genevea, Newyork, pp 144–156

    Google Scholar 

  • Hayes CK, Klemsdal S, Lorito M, Di Pietro A, Peterbauer C, Nakas JP et al (1994) Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138(1):143–148

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga ET, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66(5):1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa R, Botella L, Keck M, Jimenez JA, Montero Barrientos M, Arbona V, Gomez Cadenas A, Monte E, Nicolas C (2011) The overexpression in Arabidopsis Thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Hill RL, O’Donnell DJ, Gourlay AH, Speed CB (1995) The suitability of Agonopterix ulicetella (Lepidoptera: Oecophoridae) as a control for Ulex europaeus (Fabaceae: Genisteae) in New Zealand. Biocontrol Sci Tech 5:3–10

    Google Scholar 

  • Hiolford ICR (1997) Soil phosphorous, its measurement, its uptake by plants. Aust J Soil Res:227–239

    Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, Vol 2. Taylor and Francis, London, pp 173–184

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by T. harzianum species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Google Scholar 

  • IIlmer P, Barbato A, Schinner F (1995) Solublization of hardly-soluble AlPO4 with P-solublizing microorganisms. Soil Biol Biochem 27(3):265–270

    Google Scholar 

  • Iyamurimye F, Dick RP, Baham J (1996) Organic amendments and phosphorous dynamic. I. Phosphorous chemistry sorption (J). Soil Sci 161(7):426–435

    Google Scholar 

  • Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41(3):787–795. ISSN 1517-8382

    Article  CAS  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T et al (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400

    Google Scholar 

  • Kim KY, Jordan D, Mcdonald GA (1998) Enterobacter agglomerans, phosphate soluliblizing bacteria and microbial activity in soils effect of carbon sources. Soil Biol Biochem 30:995–1003

    Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102

    Google Scholar 

  • Kloepper JW, Tuzun S, Kuć JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Tech 2(4):349–351

    Article  Google Scholar 

  • Kolakowski LF Jr (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2(1):1–7

    Google Scholar 

  • Kopchinskiy A, KomoÅ„ M, Kubicek CP, Druzhinina IS (2005) Tricho BLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109(6):658–660

    Article  PubMed  Google Scholar 

  • Kumar G, Karthik L, Rao KVB (2010) Antimicrobial activity of latex of Calotropis Gigantea against pathogenic microorganisms. Pharmacologyonline 3:155–163

    Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metals concentration, microbial biomass and enzyme activities in a contaminated grasslands ecosystems. Soil Biol Biochem 29:179–190

    Article  CAS  Google Scholar 

  • Lehner SM, Alanasova L, Neumann NK (2013) Isotope-assited screening for iron- containing metabolites reveals high divetrsity among known and unknown siderophores produced by trichoderma spp. Appl Environ Microbiol 79:18–31

    Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from’omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Malcolm RE (1983) Assessment of soil phosphatase activity in soils. Soil Biol Biochem 15(4):403–408

    Article  CAS  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11):1213–1221

    Article  PubMed  Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol:1–8

    Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal K, Verma D (2000) Stress induced phosphate soulubilization in bacteria isolated from alkaline soils. EMS Microbiol Lett 182(2):291–296

    Google Scholar 

  • Neer EJ, Heterotrimeric G (1995) Proteins: organizers of transmembrane signals. Cell 80(2):249–257

    Google Scholar 

  • Omann M, Zeilinger S (2010) How a Myco parasite employs G-protein signalling: using the example of Trichoderma , J Signal Transduct 123126, 8

    Google Scholar 

  • Omann MR, Lehner S, Escobar Rodriguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118

    Google Scholar 

  • Peleg Y, Addison R, Aramaya R, Metzenberg RL (1996) Translocation of Neurospora crassa transcription factor NUC-1 into the nucleus is induced by phosphate limitation. Fungal Genet Biol 20:185–191

    Article  CAS  PubMed  Google Scholar 

  • Porras M, Barraeu C, Romero F (2007) Effects of soil solorization and Trichoderma on strawberry production. Crop Prot 26:782–789

    Google Scholar 

  • Puente ME, Lebskyvk BY (2004) Microbial populations and activities in the rhizoplane of rock weathering desert plants. Plant Biol 6:620–642

    Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Article  Google Scholar 

  • Rawat R, Tewari L (2010) Transmisssion electron microscopic study of cytological changes in Sclerotium rolfsii parasitized by biocontrol fungus trichoderma sp. Mycology 1(4):237–241

    Google Scholar 

  • Rawat R, Tewari L (2011) Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr Microbiol. https://doi.org/10.1007/s00284-011-9888-2

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry 7:89–123

    Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R et al (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42(9):749–760

    Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N et al (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol

    Google Scholar 

  • Renshaw JC, Robson GD, Trini APJ (2002) Fungalsiderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Google Scholar 

  • Rifai MA (1969) Revision of the genus Trichoderma. United Nations. 2009. World population prospects: the 2008 revision

    Google Scholar 

  • Ruccco M, Lanzuise S, Vinale F, Marra R, Turra D, Lois Woo S, Lorito M (2009) Identification of new biocontrol gene in Trichoderma atroviridae; the role of an ABC transporter membrane pump in interaction with different plant pathogenic fungi. Mol Plant-Microbe Interact 22(3):291–301

    Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I et al (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role I plant growth promotion. Bitechnol Adv 17(4–5):319–339

    Google Scholar 

  • Rodriguez-Escudero I, Rotger R, Cid VS, Molina M (2006) Inhibition of cdc42- dependent signaling in Saccharomyces cerevisiae by phosphatase-dead sig D/SoPB from Salmonella typhimurium. Microbiology 152(11):3437–3452

    Google Scholar 

  • Sakia S, Pandey RK, Tewari Laksmi (2015). Phosphate solubilizing potential of fungal isolates from bamboo rhizosphrere 13 (3): 492–496

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Saravanan R, Pavani Devi V, Shanmugan A, Satish Kumar D (2007) Isolation and partial purification if extracellular enzymes (1, 3) – D-glucanase from Trichoderma Ressi. (3929). Bioitechnology 6(86–98):13

    Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl- a -pyrone, a metabolite of Trichoderma harzianum , in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. Lycopersici. Mycol Res 98:1207–1209

    Google Scholar 

  • Schmoll M (2008) The information highways of a biotechnological workhorse—signal transduction in Hypocrea jecorina. BMC Genomics 9:430

    Google Scholar 

  • Shieh TR, Ware JH (1968) Survey of micro-organisms for the production of extracellular phytase. Appl Microbiol 16(9):1348–1351

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology:198–203

    Google Scholar 

  • Srivastva S, Yadav KS, Kundu BS (2004) Prospects of using phosphate solublizing pseudomonas as biofugicides. Indian J Microbiol 44(2):91–94

    Google Scholar 

  • Tamas L, Huttov AJ, Mistrki I, Kogan G (2002) Effect of carbon Chittin- Glucan on the activity of some hydrolytic enzymes in maize plants. Chem Pep 56(5):326–329

    Google Scholar 

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. Tk-1. J Antibiot 28:161–162

    Google Scholar 

  • Tewari L, Bhanu C (2004) Evaluation of agro-industrial wastes for conidia bases incoulum production of biocontrol agent: Trichoderma harzanium. J Sci Ind Res 6:807–812

    Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Google Scholar 

  • Tulasne LR, Tulasne C (1865) Selecta fungorum carpologia 3:197–198

    Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151(2):792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Marra R, Scale F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active different phytopathogens. Lett Appl Microbiol 43:143–148

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40(1):1–10

    Article  CAS  Google Scholar 

  • Viterbo ADA, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7(4):249–258

    Article  CAS  PubMed  Google Scholar 

  • Wees S, CM, van der Ent S, Pieterse CMJ (2008) Plant immune response trigerred by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Google Scholar 

  • Weiendling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:834–845

    Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizactonia and other soil fungi. Phytopathology 24:1153–1169

    Google Scholar 

  • Worasatit N, Sivasithamparam K, Ghisalberti EL, Row- land C (1994) Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Srivastva AK, Kajalnik Y, Chet I (2001) Effect of T. harzinum on microelement concentration and increase in growth of cucumber plant. Plant Soil:235–242

    Google Scholar 

  • Zeilinger S, Reithner B, Scala V et al (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71(3):1591–1597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Tewari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tewari, L., Pandey, R.K., Sharma, R.S., Kumar, N., Tewari, S.K. (2017). Phytostimulating Mechanisms and Bioactive Molecules of Trichoderma Species: Current Status and Future Prospects. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_10

Download citation

Publish with us

Policies and ethics