Skip to main content

Graphene Oxide–Polymer Gels

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Recently, graphene oxide (GO), as a two-dimensional carbon nanomaterial, has received a surge of attention in the scientific communities due to its unique structure and properties. The GO-based hydrogels have been prepared using different strategies such as acidification or by addition of organic molecules, polymers, or ions as crosslinkers which could crosslink them by covalent and supramolecular interactions such as H-bonding, coordination interactions, and hydrophobic interactions. Similarly, hydrogels based on chemically modified or grafted GO have been also reported. GO-based composites and hydrogels due to their unique features broadly examined for numerous applications such as wastewater treatment, catalysis, biomedical applications, energy storage devices, supercapacitors, and sensors. To meet the demands of such applications, assembling of graphene-based nanolayers into three-dimensional gel-like networks is the main issue that should be considered. This chapter reviews some recent progress on 3D GO-based composites and gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari B, Biswas A, Banerjee A (2011) Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles. Langmuir 28(2):1460–1469

    Article  PubMed  CAS  Google Scholar 

  • Akhavan O, Azimirad R, Gholizadeh H, Ghorbani F (2015) Hydrogen-rich water for green reduction of graphene oxide suspensions. Int J Hydrogen Energy 40(16):5553–5560

    Article  CAS  Google Scholar 

  • Alam A, Meng Q, Shi G, Arabi S, Ma J, Zhao N, Kuan H-C (2016) Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol 127:119–126

    Article  CAS  Google Scholar 

  • Aqil A, Ouhib F, Detrembleur C, Vlad A, Melinte S, Jérôme C (2013) High-quality thin graphene films from fast electrochemical exfoliation

    Google Scholar 

  • Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97

    Article  CAS  Google Scholar 

  • Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46(14):2376–2378

    Article  CAS  Google Scholar 

  • Bai H, Li C, Wang X, Shi G (2011a) On the gelation of graphene oxide. J Phys Chem C 115(13):5545–5551

    Article  CAS  Google Scholar 

  • Bai H, Sheng K, Zhang P, Li C, Shi G (2011b) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658

    Article  CAS  Google Scholar 

  • Baruah U, Chowdhury D (2016) Functionalized graphene oxide quantum dot–PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions. Nanotechnol 27(14):145501

    Article  CAS  Google Scholar 

  • Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  • Can HK, Kirci B, Kavlak S, Güner A (2003) Removal of some textile dyes from aqueous solutions by poly (N-vinyl-2-pyrrolidone) and poly (N-vinyl-2-pyrrolidone)/K2S2O8 hydrogels. Radiat Phys Chem 68(5):811–818

    Article  CAS  Google Scholar 

  • Cha C, Shin SR, Gao X, Annabi N, Dokmeci MR, Tang XS, Khademhosseini A (2014) Controlling mechanical properties of cell‐laden hydrogels by covalent incorporation of graphene oxide. Small 10(3):514–523

    Article  PubMed  CAS  Google Scholar 

  • Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7(5):1564–1596

    Article  CAS  Google Scholar 

  • Chai L, Wang T, Zhang L, Wang H, Yang W, Dai S, Meng Y, Li X (2015) A Cu–m-phenylenediamine complex induced route to fabricate poly (m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81:748–757

    Article  CAS  Google Scholar 

  • Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32(8):1083–1122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    Article  CAS  Google Scholar 

  • Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  CAS  Google Scholar 

  • Chen D, Li L, Guo L (2011) An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnol 22(32):325601

    Article  CAS  Google Scholar 

  • Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Yao B, Li C, Shi G (2013a) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  • Chen Y, Chen L, Bai H, Li L (2013b) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1(6):1992–2001

    Article  CAS  Google Scholar 

  • Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81:826–834

    Article  CAS  Google Scholar 

  • Choi W, Jo-won L (2013) Graphene: synthesis and applications. CRC, Boca Raton

    Google Scholar 

  • Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    Article  PubMed  CAS  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. Small 6(6):711–723

    Google Scholar 

  • Compton OC, An Z, Putz KW, Hong BJ, Hauser BG, Brinson LC (2012) Additive-free hydrogelation of graphene oxide by ultrasonication. Carbon 50(10):3399–3406

    Google Scholar 

  • Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703

    Article  PubMed  CAS  Google Scholar 

  • Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362

    Article  CAS  Google Scholar 

  • Cui W, Ji J, Cai Y-F, Li H, Ran R (2015) Robust, anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J Mater Chem A 3(33):17445–17458

    Article  CAS  Google Scholar 

  • Dai T, Shi Z, Shen C, Wang J, Lu Y (2010) Self-strengthened conducting polymer hydrogels. Synth Met 160(9):1101–1106

    Article  CAS  Google Scholar 

  • Deng J, Lei B, He A, Zhang X, Ma L, Li S, Zhao C (2013) Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J Hazard Mater 263:467–478

    Article  PubMed  CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of grapheme oxide. Chem Soc Rev 39(1):228–240

    Article  PubMed  CAS  Google Scholar 

  • Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Tang Q, Li R, He B, Yu L, Yang P (2015) Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells. J Power Sour 284:369–376

    Article  CAS  Google Scholar 

  • Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51

    Article  PubMed  CAS  Google Scholar 

  • Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide—challenges for synthetic chemist. Angew Chem Int Ed 53(30):7720–7738

    Article  CAS  Google Scholar 

  • Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1(25):7433–7443

    Article  CAS  Google Scholar 

  • Fernandez-Merino M, Guardia L, Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432

    Article  CAS  Google Scholar 

  • Franklin D, Guhanathan S (2015) Investigation of citric acid–glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: a green approach. Ecotoxicol Environ Saf 121:80–86

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Shang S, Hu E, Yuen CWM, Jiang S-X (2015) Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl Surf Sci 357:866–872

    Article  CAS  Google Scholar 

  • Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    Article  PubMed  CAS  Google Scholar 

  • GhavamiNejad A, Hashmi S, Vatankhah-Varnoosfaderani M, Stadler FJ (2016) Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels. Rheol Acta 1–14

    Google Scholar 

  • Gounko I, Nicolosi V, Goodhue R, Scardaci V, Coleman JN, Boland J, Duesberg GS (2008) High-yield production of graphene by liquid-phase exfoliation of graphite

    Google Scholar 

  • Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomater 31(10):2701–2716

    Article  CAS  Google Scholar 

  • Guo H, Peng M, Zhu Z, Sun L (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5(19):9040–9048

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Jiao T, Zhang Q, Guo W, Peng Q, Yan X (2015a) Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res Lett 10(1):1–10

    Article  CAS  Google Scholar 

  • Guo Y, Duan B, Cui L, Zhu P (2015b) Construction of chitin/graphene oxide hybrid hydrogels. Cellulose 22(3):2035–2043

    Article  CAS  Google Scholar 

  • Hayes WI, Joseph P, Mughal MZ, Papakonstantinou P (2015) Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behavior. J Solid State Electrochem 19(2):361–380

    Article  CAS  Google Scholar 

  • He A, Lei B, Li S, Ma L, Sun S, Zhao C (2013) Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. RSC Adv 3(44):22120–22129

    Article  CAS  Google Scholar 

  • Hoffmann J, Plötner M, Kuckling D, Fischer W-J (1999) Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens Actuators, A 77(2):139–144

    Article  CAS  Google Scholar 

  • Hong W, Zhao X, Zhou J, Suo Z (2008) A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids 56(5):1779–1793

    Article  CAS  Google Scholar 

  • Hou C, Zhang Q, Li Y, Wang H (2012) Graphene–polymer hydrogels with stimulus-sensitive volume changes. Carbon 50(5):1959–1965

    Article  CAS  Google Scholar 

  • Huang H, Lü S, Zhang X, Shao Z (2012) Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition. Soft Matter 8(17):4609–4615

    Article  CAS  Google Scholar 

  • Huang P, Chen W, Yan L (2013) An inorganic–organic double network hydrogel of graphene and polymer. Nanoscale 5(13):6034–6039

    Article  PubMed  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  • Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47

    CAS  Google Scholar 

  • Jia Z, Li C, Liu D, Jiang L (2015) Direct hydrothermal reduction of graphene oxide based papers obtained from tape casting for supercapacitor applications. Rsc Adv 5(99):81030–81037

    Article  CAS  Google Scholar 

  • Jung JH, Lee JH, Silverman JR, John G (2013) Coordination polymer gels with important environmental and biological applications. Chem Soc Rev 42(3):924–936

    Article  PubMed  CAS  Google Scholar 

  • Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nat 458(7240):872–876

    Article  CAS  Google Scholar 

  • Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  • Lee W, Choi D, Lee Y, Kim D-N, Park J, Koh W-G (2008) Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application. Sens Actuators B: Chem 129(2):841–849

    Article  CAS  Google Scholar 

  • Lee S, Lee H, Sim JH, Sohn D (2014) Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface. Macromol Res 22(2):165–172

    Article  CAS  Google Scholar 

  • Li C, Shi G (2014) Functional gels based on chemically modified graphenes. Adv Mater 26(24):3992–4012

    Article  PubMed  CAS  Google Scholar 

  • Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008a) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008b) Highly conducting graphene sheets and Langmuir–Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zeng X, Ren T, van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2(3):137–161

    Article  Google Scholar 

  • Lin N, Zhou J, Zhu Y, Qian Y (2014) Embedding silicon nanoparticles in graphene based 3D framework by cross-linking reaction for high performance lithium ion batteries. J Mater Chem A 2(46):19604–19608

    Article  CAS  Google Scholar 

  • Lin B, Feng T, Chu F, Zhang S, Yuan N, Qiao G, Ding J (2015) Poly (ionic liquid)/ionic liquid/graphene oxide composite quasi solid-state electrolytes for dye sensitized solar cells. RSC Adv 5(70):57216–57222

    Article  CAS  Google Scholar 

  • Liu J, Chen G, Jiang M (2011) Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44(19):7682–7691

    Article  CAS  Google Scholar 

  • Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160–14167

    Article  CAS  Google Scholar 

  • Liu X, Zhou Y, Nie W, Song L, Chen P (2015a) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50(18):6113–6123

    Article  CAS  Google Scholar 

  • Liu Y, Yuan G, Jiang Z, Yao Z, Yue M (2015b) Solvothermal synthesis of graphene nanosheets as the electrode materials for supercapacitors. Ionics 21(3):801–808

    Article  CAS  Google Scholar 

  • Liu Y, Genzer J, Dickey MD (2016) “2D or not 2D”: Shape-programming polymer sheets. Prog Polym Sci 52:79–106

    Article  CAS  Google Scholar 

  • Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1(6):437–442

    Article  PubMed  CAS  Google Scholar 

  • Low C, Walsh F, Chakrabarti M, Hashim M, Hussain M (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21

    Article  CAS  Google Scholar 

  • Luan VH, Chung JS, Hur SH (2015) Preparation of a reduced graphene oxide hydrogel by Ni ions and its use in a supercapacitor electrode. Rsc Adv 5(29):22753–22758

    Google Scholar 

  • Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat mater 3(4):249–253

    Google Scholar 

  • Ma D, Lin J, Chen Y, Xue W, Zhang L-M (2012) In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8):3001–3007

    Article  CAS  Google Scholar 

  • Ma X, Li Y, Wang W, Ji Q, Xia Y (2013) Temperature-sensitive poly (N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polymer J 49(2):389–396

    Article  CAS  Google Scholar 

  • Mao R, Liu Y, Huglin MB, Holmes PA (1998) Dynamic light scattering from polymer gels: spring‐rotor model. Polym Int 45(3):321–326

    Article  CAS  Google Scholar 

  • Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. Rsc Adv 2(7):2643–2662

    Article  CAS  Google Scholar 

  • Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113(5):3407–3424

    Article  PubMed  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  PubMed  CAS  Google Scholar 

  • Miao C, Zheng C, Liang O, Xie YH (2011) Chemical vapor deposition of graphene

    Google Scholar 

  • Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene‐based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859

    Article  CAS  Google Scholar 

  • Moraes FC, Freitas RG, Pereira R, Gorup LF (2015) Coupled electronic and morphologic changes in graphene oxide upon electrochemical reduction. Carbon 91:11–19

    Google Scholar 

  • Moussa H, Girot E, Mozet K, Alem H, Medjahdi G, Schneider R (2016) ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B 185:11–21

    Article  CAS  Google Scholar 

  • Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6(9):7867–7878

    Article  PubMed  CAS  Google Scholar 

  • Ni T, Xu L, Sun Y, Yao W, Dai T, Lu Y (2015) Facile fabrication of reduced graphene oxide/polypyrrole composite hydrogels with excellent electrochemical performance and compression capacity. ACS Sustain Chem Eng 3(5):862–870

    Article  CAS  Google Scholar 

  • Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417(6887):424–428

    Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  PubMed  CAS  Google Scholar 

  • Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) The reduction of graphene oxide. ACS Nano 2(3):572–578

    Article  PubMed  CAS  Google Scholar 

  • Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  • Peng X, He C, Liu J, Wang H (2016) Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. J Mater Sci 51(12):5901–5911

    Article  CAS  Google Scholar 

  • Reina A, Kong J (2012) In: Graphene nanoelectronics, Springer, p 167–203

    Google Scholar 

  • Rogovina L, Vasil’ev V (2010) Diversity of polymer gels and the main factors determining the properties of gels and related solid polymers. Polym Sci Ser A 52(11):1171–1183

    Google Scholar 

  • Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohyd Polym 138:222–228

    Article  CAS  Google Scholar 

  • Sayyar S, Murray E, Thompson B, Chung J, Officer DL, Gambhir S, Spinks GM, Wallace GG (2015) Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B 3(3):481–490

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Hu Y, Li C, Qin C, Ye M (2009) Synthesis of amphiphilic graphene nanoplatelets. Small 5(1):82–85

    Google Scholar 

  • Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A Appl Sci Manuf 43(9):1476–1481

    Article  CAS  Google Scholar 

  • Shi K, Liu Z, Wei Y-Y, Wang W, Ju X-J, Xie R, Chu L-Y (2015) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. ACS Appl Mater Interfaces 7(49):27289–27298

    Article  PubMed  CAS  Google Scholar 

  • Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY (2009) Adv Func Mater 19(12):1987–1992

    Article  CAS  Google Scholar 

  • Spasevska D, Leal G, Fernández M, Gilev JB, Paulis M, Tomovska R (2015) Crosslinked reduced graphene oxide/polymer composites via in situ synthesis by semicontinuous emulsion polymerization. RSC Adv 5(21):16414–16421

    Article  CAS  Google Scholar 

  • Srivastava N, He G, Mende PC, Feenstra RM, Sun Y (2012) Graphene formed on SiC under various environments: comparison of Si-face and C-face. J Phys D Appl Phys 45(15):154001

    Article  CAS  Google Scholar 

  • Staudenmaier L (1899) Graphite oxide post-synthesis processing protocols. Ber Dtsch Chem Ges 32(2):1394–1399

    Article  CAS  Google Scholar 

  • Su C, Loh KP (2012) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46(10):2275–2285

    Article  CAS  Google Scholar 

  • Sun S, Wu P (2011) A one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21(12):4095–4097

    Article  CAS  Google Scholar 

  • Sun X-G, Fang Y, Jiang X, Yoshii K, Tsuda T, Dai S (2016) Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem Commun 52(2):292–295

    Article  CAS  Google Scholar 

  • Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8(3):171–172

    Article  PubMed  CAS  Google Scholar 

  • Tai Z, Yang J, Qi Y, Yan X, Xue Q (2013) Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties. RSC Adv 3(31):12751–12757

    Article  CAS  Google Scholar 

  • Tao C-A, Wang J, Qin S, Lv Y, Long Y, Zhu H, Jiang Z (2012) Fabrication of pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release systems. J Mater Chem 22(47):24856–24861

    Article  CAS  Google Scholar 

  • Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  PubMed  CAS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Vallés C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Pénicaud A (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130(47):15802–15804

    Article  PubMed  CAS  Google Scholar 

  • Vermisoglou E, Giannakopoulou T, Romanos G, Giannouri M, Boukos N, Lei C, Lekakou C, Trapalis C (2015) Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide. Appl Surf Sci 358:100–109

    Article  CAS  Google Scholar 

  • Wang R, Sun J, Gao L, Xu C, Zhang J, Liu Y (2011a) Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films. Nanoscale 3(3):904–906

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Shi Z, Yin J (2011b) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3(4):1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Song D, Jia S, Shao Z (2014a) Poly (N, N-dimethylaminoethyl methacrylate)/graphene oxide hybrid hydrogels: pH and temperature sensitivities and Cr (VI) adsorption. React Funct Polym 81:8–13

    Article  CAS  Google Scholar 

  • Wang X, Liu Z, Ye X, Hu K, Zhong H, Yu J, Jin M, Guo Z (2014b) A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Appl Surf Sci 308:82–90

    Article  CAS  Google Scholar 

  • Wang J, Li B, Ni T, Dai T, Lu Y (2015a) One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitive properties. Compos Sci Technol 109:12–17

    Article  CAS  Google Scholar 

  • Wang Z, Guo H, Yan P (2015b) In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation. Electrochim Acta 174:26–32

    Article  CAS  Google Scholar 

  • Wei D, Grande L, Chundi V, White R, Bower C, Andrew P, Ryhänen T (2012) Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun 48(9):1239–1241

    Article  CAS  Google Scholar 

  • Williams G, Kamat PV (2009) Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24):13869–13873

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Liu S, Luo Y, Lu W, Wang L, Sun X (2011) Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale 3(5):2142–2144

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362

    Article  PubMed  CAS  Google Scholar 

  • Xue R, Xin X, Wang L, Shen J, Ji F, Li W, Jia C, Xu G (2015) A systematic study of the effect of molecular weights of polyvinyl alcohol on polyvinyl alcohol–graphene oxide composite hydrogels. Phys Chem Chem Phys 17(7):5431–5440

    Article  PubMed  CAS  Google Scholar 

  • Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomater 23(2):561–567

    Article  CAS  Google Scholar 

  • Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high‐performance graphene oxide‐doped ion gel as gel polymer electrolyte for all‐solid‐state supercapacitor applications. Adv Func Mater 23(26):3353–3360

    Article  CAS  Google Scholar 

  • Yeh MH, Lin LY, Chang LY, Leu YA, Cheng WY, Lin JJ, Ho KC (2014) Dye‐sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem Phys Chem 15(6):1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Yeo Y, Kohane DS (2008) Polymers in the prevention of peritoneal adhesions. Eur J Pharm Biopharm 68(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Song A, Xu G, Xin X, Shen J, Zhang H, Song Z (2015a) Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. RSC Adv 5(92):75589–75599

    Article  CAS  Google Scholar 

  • Yu Y, De Andrade LCX, Fang L, Ma J, Zhang W, Tang Y (2015b) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50(9):3457–3466

    Article  CAS  Google Scholar 

  • Yuan S, Tang Q, He B, Zhao Y (2014) Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. J Power Sour 260:225–232

    Article  CAS  Google Scholar 

  • Zeng Y, Qiu L, Wang K, Yao J, Li D, Simon GP, Wang R, Wang H (2013) Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent. Rsc Adv 3(3):887–894

    Article  CAS  Google Scholar 

  • Zhang E, Wang T, Lian C, Sun W, Liu X, Tong Z (2013) Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay. Carbon 62:117–126

    Google Scholar 

  • Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Low swelling hyperbranched poly (amine-ester) hydrogels for pH-modulated differential release of anticancer drugs. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  • Zhang H, Dong Y, Wang L, Wang G, Wu J, Zheng Y, Yang H, Zhu S (2011) J Mater Chem 21(35):13530–13537

    Article  CAS  Google Scholar 

  • Zhang H-H, Liu Q, Feng K, Chen B, Tung C-H, Wu L-Z (2012) Facile photoreduction of graphene oxide by an NAD (P) H model: Hantzsch 1, 4-dihydropyridine. Langmuir 28(21):8224–8229

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhai D, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the and the swelling behavior. RSC Adv 4(84):44600–44609

    Article  CAS  Google Scholar 

  • Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang CA, Lv M, Yang X (2014) Three-dimensional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci 36:137–151

    Google Scholar 

  • Zhao H, Jiao T, Zhang L, Zhou J, Zhang Q, Peng Q, Yan X (2015) Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Sci China Mater 58(10):811–818

    Article  CAS  Google Scholar 

  • Zheng Q, Kim JK (2015) In: Graphene for transparent conductors, Springer, 29–94

    Google Scholar 

  • Zhong M, Liu Y-T, Xie X-M (2015) Self-healable, super tough graphene oxide–poly (acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3(19):4001–4008

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010a) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010b) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122

    Article  CAS  Google Scholar 

  • Zhu T, Teng K, Shi J, Chen L, Xu Z (2016) A facile assembly of 3D robust double network graphene/polyacrylamide architectures via γ-ray irradiation. Compos Sci Technol 123:276–285

    Article  CAS  Google Scholar 

  • Zu S-Z, Han B-H (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113(31):13651–13657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the support of Lorestan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Dadkhah Tehrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dadkhah Tehrani, A., Adeli, M., Sattari, S., Soleimani, K. (2018). Graphene Oxide–Polymer Gels. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_10

Download citation

Publish with us

Policies and ethics