Skip to main content

Smart Polymer Gels

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 1160 Accesses

Abstract

Fundamental definitions, classification, and applications of smart polymer gelsĀ areĀ the main discussions of this chapter. Smart polymer gels are polymer network structure which swell or shrink as a response to the changing in surrounding environment. Smart polymer gels are able to absorb high amount of water or biological fluid and release it when particular characteristic such as temperature, light, pH, and electric field of the surrounding medium is changed. Chemical compositions of the main materials of smart polymer gels are the main factors that determine the final properties. Smart polymer gels have an extensive range of application in medical such as drug delivery system, artificial muscle, and actuators. In addition, smart polymer gels are used in water treatment as ions and dyes adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rehim, HA, Hegazy ESA, Abd El-Mohdy HL (2006) Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. J Appl Polym Sci 101:3955ā€“3962

    Google ScholarĀ 

  • Adem E, Burillo G, Bucio E, MagaƱa C, Avalos-Borja M (2009) Characterization of interpenetrating networks of acrylic acid (AAc) and N-isopropylacrylamide (NIPAAm) synthesized by ionizing radiation. Radiat Phys Chem 78:549ā€“552

    Google ScholarĀ 

  • Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699ā€“766

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Adnadjevic B, Jovanovic J (2009) A comparative kinetics study of isothermal DRUG release from poly(acrylic acid) and poly(acrylic-co-methacrylic acid) hydrogels. Colloids Surf B 69:31ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Alemzadeh I, Vossoughi M (2002) Controlled release of paraquat from poly vinyl alcohol hydrogel. Chem Eng Process 41:707ā€“710

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ali AE, Shawky HA, El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337ā€“2344

    Google ScholarĀ 

  • Bajpai SK, Das P (2011) Gentamicin-loaded poly(acrylic acid)-grafted cotton fibers, part 1: synthesis, characterization, and preliminary drug release study. J Appl Polym Sci 122:366ā€“374

    Google ScholarĀ 

  • Berndt I, Pedersen JS, Richtering W (2006) Temperature-sensitive core-shell microgel particles with dense shell. Angew Chem 118:1769ā€“1773

    ArticleĀ  Google ScholarĀ 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Delivery Rev 62:83ā€“99

    Google ScholarĀ 

  • Blackburn W, Lyon LA (2008) Size-controlled synthesis of monodisperse core/shell nanogels. Colloid Polym Sci 286:563ā€“569

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Blanco MD, GarcĆ­a O, Trigo RM, TeijĆ³n J, Katime I (1996) 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester: I. Acrylamide-co-monomethyl itaconate. Biomaterials 17:1061ā€“1067

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bonakdar S, Emami SH, Shokrgozar MA, Farhadi A, Ahmadi SA, Amanzadeh A (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30:636ā€“643

    Google ScholarĀ 

  • Cauich-Rodriguez JV, Deb S, Smith R (1996) Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol-vinyl acetate). Biomaterials 17:2259ā€“2264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Changez M, Burugapalli K, Koul V, Choudhary V (2003) The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24:527ā€“536

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Changez M, Koul V, Krishna B, Dinda AK, Choudhary V (2004) Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: in vitro and in vivo. Biomaterials 25:139ā€“146

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cheddadi M, LĆ³pez-Cabarcos E, Slowing K, Barcia E, FernĆ”ndez-Carballido A (2011). Cytotoxicity and biocompatibility evaluation of a poly(magnesium acrylate) hydrogel synthesized for drug delivery. Int J Pharm 413:126-133

    Google ScholarĀ 

  • Chen J, Liu M, Liu H, Ma L (2009) Synthesis, swelling and drug release behavior of poly(N, N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater Sci Eng, C 29:2116ā€“2123

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chun KW, Lee JB, Kim SH, Park TG (2005) Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26:3319ā€“3326

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chun C, Lee SM, Kim SY, Yang HK, Song S-C (2009) Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 30:2349ā€“2360

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dai J, Yan H, Yang H, Cheng R. (2011) Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions. Chem Eng J 165:240ā€“249

    Google ScholarĀ 

  • Dall W, Sharples DJ (1991) References. Advances in marine biology. Academic Press

    Google ScholarĀ 

  • Desrosiers G, Savenkoff C, Olivier M, Stora G, Juniper K, Caron A, Gagne JP, Legendre L, Mulsow S, Grant J, Roy S, Grehan A, Scaps P, Silverberg N, Klein B, Tremblay JE, Therriault JC (2000) Trophic structure of macrobenthos in the Gulf of St. Lawrence and on the Scotian Shelf. Deep-Sea Res Part Ii-Topical Stud Oceanogr 47:663ā€“697

    ArticleĀ  Google ScholarĀ 

  • Devine DM, Devery SM, Lyons JG, Geever LM, Kennedy JE, Higginbotham CL (2006) Multifunctional polyvinylpyrrolidinone-polyacrylic acid copolymer hydrogels for biomedical applications. Int J Pharm 326:50ā€“59

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dimonie VL, Daniels ES, Shaffer OL, El-Aasser MS (1997) Control of particle morphology. In: Lovell P, El-Aasser MS (eds) Emulsion polymerization and emulsion polymers. Wiley, West Sussex, England

    Google ScholarĀ 

  • Dā€™Ulivo A (2004) Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim Acta, Part B 59:793ā€“825

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Duran S, Solpan D, GĆ¼ven O (1999) Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instrum Methods Phys Res, Sect B 151:196ā€“199

    ArticleĀ  CASĀ  Google ScholarĀ 

  • El Bakouri H, Aassiri A, Morillo J, Usero J, Khaddor M, Ouassini A (2008) Pesticides and lipids occurrence in Tangier agricultural soil (northern Morocco). Appl Geochem 23:3487ā€“3497

    ArticleĀ  CASĀ  Google ScholarĀ 

  • El-hag Ali A, Alarifi A (2009) Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydr Polym

    Google ScholarĀ 

  • Elliott JE, Bowman CN (2002) Effects of solvent quality during polymerization on network structure of cross-linked methacrylate copolymers. J Phys Chem B 106:2843ā€“2847

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fundueanu G, Mocanu G, Constantin M, Carpov A, Bulacovschi V, Esposito E, Nastruzzi C (2001) Acrylic microspheres for oral controlled release of the biguanide buformin. Int J Pharm 218:13ā€“25

    Google ScholarĀ 

  • Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL (2008) Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm 69:1147ā€“1159

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gong C, Shi S, Wu L, Gou M, Yin Q, Guo Q, Dong P, Zhang F, Luo F, Zhao X, Wei Y, Qian Z (2009) Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: Sol-gel-sol transition and drug delivery behavior. Acta Biomaterialia, In Press, Corrected Proof

    Google ScholarĀ 

  • Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohyd Polym 61:464ā€“471

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB (2007) Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2ā€‰+ā€‰and Cu2ā€‰+ā€‰from water with excellent performance. J Appl Polym Sci 105:2903ā€“2909

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ha J-W, Park IJ, Lee S-B, Kim D-K (2002) Preparation and characterization of coreā€“shell particles containing perfluoroalkyl acrylate in the Shell. Macromolecules 35:6811ā€“6818

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638ā€“1649

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hendrickson GR, Smith MH, South AB, Lyon LA (2010) Design of multiresponsive hydrogel particles and assemblies. Adv Func Mater 20:1697ā€“1712

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3ā€“12

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hongyan He MS (2006) Multifunctional medical device based on PH-sensitive hydrogels for controlled drug delivery. PhD, Ohio State University

    Google ScholarĀ 

  • Huynh DP, Im GJ, Chae SY, Lee KC, Lee DS (2009) Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. J Controlled Release 137:20ā€“24

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Issa R, Akelah A, Rehab A, Solaro R, Chiellini E (1990) Controlled release of herbicides bound to poly[oligo(oxyethylene) methacrylate] hydrogels. J Controlled Release 13:1ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jones CD, Lyon LA (2003) Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) coreā€“shell microgels. Macromolecules 36:1988ā€“1993

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277ā€“289

    Google ScholarĀ 

  • Kadlubowski S, Henke A, Ulanski P, Rosiak JM, Bromberg L, Hatton TA (2007) Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by photoinduced crosslinking of homopolymers. Polymer 48:4974ā€“4981

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kaetsu I (1996) Biomedical materials, devices and drug delivery systems by radiation techniques. Radiat Phys Chem 47:419ā€“424

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kakoulides EP, Smart JD, Tsibouklis J (1998) Azocross-linked poly(acrylic acid) for colonic delivery and adhesion specificity: synthesis and characterisation. J Controlled Release 52:291ā€“300

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S (2010) Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym Degradation Stability 95:1894ā€“1902

    Google ScholarĀ 

  • Karadag E, ƜzĆ¼m ƖB, Saraydin D, GĆ¼ven O (2005) Dynamic swelling behavior of [gamma]-radiation induced polyelectrolyte poly(AAm-co-CA) hydrogels in urea solutions. Int J Pharm 301:102ā€“111

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Karppi J, Akerman S, Akerman K, Sundell A, Nyyssƶnen K, PenttilƤ I (2007) Isolation of drugs from biological fluids by using pH sensitive poly(acrylic acid) grafted poly(vinylidene fluoride) polymer membrane in vitro. Eur J Pharm Biopharm 67:562ā€“568

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Karppi J, Akerman S, Akerman K, Sundell A, Nyyssƶnen K, PenttilƤ I (2008) Erratum to ā€œIsolation of drugs from biological fluids by using pH sensitive poly(acrylic acid) grafted poly(vinylidene fluoride) polymer membrane in vitroā€. Eur J Pharm Biopharm 68:847ā€“850 (Eur J Pharm Biopharm 67:562ā€“568 (2007))

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Katime I, Novoa R, DĆ­az de Apodaca E, MendizĆ”bal E, Puig J (1999) Theophylline release from poly(acrylic acid-co-acrylamide) hydrogels. Polym Testing 18:559ā€“566

    Google ScholarĀ 

  • Katime I, Novoa R, Zuluaga F (2001) Swelling kinetics and release studies of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. Eur Polym J 37:1465ā€“1471

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Katime I, Novoa R, De Apodaca ED, RodriƬ Guez E (2004) Release of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. J Polym Sci, Part A: Polym Chem 42:2756ā€“2765

    Google ScholarĀ 

  • Khan AK, Ray BC, Dolui SK (2008) Preparation of core-shell emulsion polymer and optimization of shell composition with respect to opacity of paint film. Prog Org Coat 62:65ā€“70

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim K-S, Park S-J (2010) Effect of porous silica on sustained release behaviors of pH sensitive Pluronic F127/poly(acrylic acid) hydrogels containing tulobuterol. Colloids Surf B 80:240ā€“246

    Google ScholarĀ 

  • Kim B, Peppas NA (2003) In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers. Int J Pharm 266:29ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim SJ, Yoon SG, Lee YM, Kim SI (2003) Electrical sensitive behavior of poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) IPN hydrogel. Sens Actuators B: Chem 88:286ā€“291

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim J, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu L (2008) Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromol 9:149ā€“157

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Landers R, HĆ¼bner U, Schmelzeisen R, MĆ¼lhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437ā€“4447

    Google ScholarĀ 

  • Lee W-F, Chen Y-C (2006) Effects of intercalated hydrotalcite on drug release behavior for poly(acrylic acid-co-N-isopropyl acrylamide)/intercalated hydrotalcite hydrogels. Eur Polym J 42:1634ā€“1642

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lee C-F, Lin C-C, Chien C-A, Chiu W-Y (2008) Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic acid)/nano-Fe3O4 magnetic composite latex particle that is synthesized by a novel method. Eur Polymer J 44:2768ā€“2776

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li W-H, Stƶver HDH (2000) Monodisperse cross-linked coreā€“shell polymer microspheres by precipitation polymerization. Macromolecules 33:4354ā€“4360

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li A, Wang A (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630ā€“1637

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li D, Omalley BW, Paulson D (2009) Composition for controlled release delivery for treating otorhinolaryngologyā€”and head and neck-associated pathologies e.g. allergy and laryngology comprises Chitosan-glycerophosphate hydrogel, and agent for treatment of the pathologies

    Google ScholarĀ 

  • Li S, Zhang H, Feng J, Xu R, Liu X (2011) Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination, In Press, Corrected Proof

    Google ScholarĀ 

  • Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohyd Polym 77:181ā€“187

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lin J, Tang Q, Wu J (2007) The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel. React Funct Polym 67:489ā€“494

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu MZ, Liang R, Zhan F, Liu Z, Niu AZ (2006) Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Technol 17:430ā€“438

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lukowski G, MĆ¼ller RH, MĆ¼ller BW, Dittgen M (1992) Acrylic acid copolymer nanoparticles for drug delivery: I. Characterization of the surface properties relevant for in vivo organ distribution. Int J Pharm 84:23ā€“31

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mahdavinia GR, Pourjavadi A, Zohuriaan-Mehr MJ (2008) Synthesis and properties of highly swelling PAAm/chitosan semi-IPN hydrogels. Macromolecular Symposia 274:171ā€“176

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mā€™Bareck CO, Nguyen QT, Alexandre S, Zimmerlin I (2006) Fabrication of ion-exchange ultrafiltration membranes for water treatment: I. Semi-interpenetrating polymer networks of polysulfone and poly(acrylic acid). J Membr Sci 278:10ā€“18

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Miao Q, Xu D, Wang Z, Xu L, Wang T, Wu Y, Lovejoy DB, Kalinowski DS, Richardson DR, Nie G, Zhao Y (2010) Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials 31:7364ā€“7375

    Google ScholarĀ 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54:79ā€“98

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Munshi SK, Singh R, Vij VK, Jawanda JS (1978) Mineral composition of leaves in relation to degree of granulation in sweet orange. Sci Hortic 9:357ā€“367

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nam K, Watanabe J, Ishihara K (2004) The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Eur J Pharm Sci 23:261ā€“270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nho YC, Mook Lim Y, Moo Lee Y (2004) Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation. Radiat Phys Chem 71:239ā€“242

    Google ScholarĀ 

  • Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Controlled Release 102:3ā€“12

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Patachia S, Valente AJM, Baciu C (2007) Effect of non-associated electrolyte solutions on the behaviour of poly(vinyl alcohol)-based hydrogels. Eur Polym J 43:460ā€“467

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301:55ā€“62

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Paulino AT, Guilherme MR, Reis AV, Tambourgi EB, Nozaki J, Muniz EC (2007) Capacity of adsorption of Pb2ā€‰+ā€‰and Ni2ā€‰+ā€‰from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation. J Hazard Mater 147:139ā€“147

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27ā€“46

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363ā€“1370

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pourjavadi A, Hosseinzadeh H, Mahdavinia GR, Zohuriaan-Mehr MJ (2007a) Carrageenan-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites: synthesis, characterisation and swelling behaviour. Polym Polym Compos 15:43ā€“51

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pourjavadi A, Hosseinzadeh H, Sadeghi M (2007b) Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater 41:2057ā€“2069

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321ā€“339

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Raj Singh TR, Mccarron PA, Woolfson AD, Donnelly RF (2009) Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels. Eur Polym J 45:1239ā€“1249

    Google ScholarĀ 

  • Ren JL, Sun RC (2010) Hemicelluloses. Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam

    Google ScholarĀ 

  • Sahoo A, Ramasubramani KRT, Jassal M, Agrawal AK (2007) Effect of copolymer architecture on the response of pH sensitive fibers based on acrylonitrile and acrylic acid. Eur Polym J 43:1065ā€“1076

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sasa N, Yamaoka T (1994) Surface-activated photopolymer microgels. Adv Mater 6:417ā€“421

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Progress Polym Sci 17:163ā€“249

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Seoudi R (2008) Effect of polyvinyl alcohol molecular weight and UV-photoactivation on the size of gold nanoparticle. Physica B 403:4236ā€“4240

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shah CP, Singh KK, Kumar M, Bajaj PN (2010) Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Mater Res Bull 45:56ā€“62

    Google ScholarĀ 

  • Sheikh N, Jalili L, Anvari F (2010) A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking. Radiat Phys Chem 79:735ā€“739

    Google ScholarĀ 

  • Shirsath SR, Hage AP, Zhou M, Sonawane SH, Ashokkumar M (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination

    Google ScholarĀ 

  • Shukla NB, Daraboina N, Madras G (2009) Oxidative and photooxidative degradation of poly(acrylic acid). Polym Degrad Stab 94:1238ā€“1244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siemoneit U, Schmitt C, Alvarez-Lorenzo C, Luzardo A, Otero-Espinar F, Concheiro A, Blanco-MĆ©ndez J (2006) Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int J Pharm 312:66ā€“74

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh B, Chauhan GS, Kumar S, Chauhan N (2007) Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohyd Polym 67:190ā€“200

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Solpan D, Duran S, Saraydin D, GĆ¼ven O (2003) Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels. Radiat Phys Chem 66:117ā€“127

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Solpan D, Duran S, Torun M (2008) Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions. Radiat Phys Chem 77:447ā€“452

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tada D, Tanabe T, Tachibana A, Yamauchi K (2005) Drug release from hydrogel containing albumin as crosslinker. J Biosci Bioeng 100:551ā€“555

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Talpur FN, Bhanger MI, Memon NN (2009) Milk fatty acid composition of indigenous goat and ewe breeds from Sindh, Pakistan. J Food Compos Anal 22:59ā€“64

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1ā€“9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J (2008) Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohyd Polym 73:473ā€“481

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1ā€“15

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of Chitosan: a review. ACS Sustain Chem Eng 2(12):2637ā€“2652

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834ā€“847

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tomic SL, Micic MM, Filipovic JM, Suljovrujic EH (2007) Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem 76:801ā€“810

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tu H, Qu Y, Hu X, Yin Y, Zheng H, Xu P, Xiong F (2010) Study of the sigmoidal swelling kinetics of carboxymethylchitosan-g-poly(acrylic acid) hydrogels intended for colon-specific drug delivery. Carbohydr Polym 82:440ā€“445

    Google ScholarĀ 

  • Turkington AV, Paradise TR (2005) Sandstone weathering: a century of research and innovation. Geomorphology 67:229ā€“253

    ArticleĀ  Google ScholarĀ 

  • Uchida R, Sato T, Tanigawa H, Uno K (2003) Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. J Controlled Release 92:259ā€“264

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Varshosaz J, Falamarzian M (2001) Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes. Eur J Pharm Biopharm 51:235ā€“240

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang B, Xu X-D, Wang Z-C, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids Surf B 64:34ā€“41

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang Q, Xie X, Zhang X, Zhang J, Wang A (2010). Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356ā€“362

    Google ScholarĀ 

  • Wei Q, Li J, Qian B, Fang B, Zhao C (2009) Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels. J Membr Sci 337:266ā€“273

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xiang Y, Peng Z, Chen D (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 42:2125ā€“2132

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xiong Z, Chen H, Xu LA, Zhang LF, Xiong CD, Huang X (2007) Preparation and properties of thermo-sensitive hydrogels of konjac glucomannan grafted N-isopropylacrylamide for controlled drug delivery. Iran Polym J 6:425ā€“431

    Google ScholarĀ 

  • Xiong C, Yao C, Wang L, Ke J (2009) Adsorption behavior of Cd(II) from aqueous solutions onto gel-type weak acid resin. Hydrometallurgy 98:318ā€“324

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yadvinder S, Bijay S, Timsina J, Donald LS (2005) Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in agronomy. Academic Press

    Google ScholarĀ 

  • Yang C-C, Lin S-J, Hsu S-T (2003) Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. J Power Sources 122:210ā€“218

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109ā€“116

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yoo MK, Sung YK, Lee YM, Cho CS (2000) Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer 41:5713ā€“5719

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang JT, Cheng SX, Huang SW, Zhuo RX (2003) Temperature-sensitive poly (N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate. Macromol Rapid Commun 24:447ā€“451

    ArticleĀ  Google ScholarĀ 

  • Zhang X, Wu D, Chu CCC-C (2004) Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 25:4719ā€“4730

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang YT, Fan LH, Zhi TT, Zhang L, Huang H, Chen HL (2009) Synthesis and characterization of poly(acrylic acid-co-acrylamide)/hydrotalcite nanocomposite hydrogels for carbonic anhydrase immobilization. J Polym Sci Part A Polym Chem 47:3232ā€“3240

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao H, Li J, Jiang L (2004) Inhibition of HIV-1 TAR RNA-Tat peptide complexation using poly(acrylic acid). Biochem Biophys Res Commun 320:95ā€“99

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater

    Google ScholarĀ 

  • Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2ā€‰+ā€‰from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels. Desalination 263:170ā€“175

    Google ScholarĀ 

  • Zheng Y, Huang D, Wang A (2011) Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2ā€‰+ā€‰recovery. Analytica Chimica Acta 687:193ā€“200

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waham Ashaier Laftah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laftah, W.A. (2018). Smart Polymer Gels. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_11

Download citation

Publish with us

Policies and ethics