Skip to main content

Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Heavy metal (HM) toxicity is one of the leading abiotic stresses, which is very unsafe and risky for plants. With a fleeting enhancement in industrialization and urbanization due to population explosion, heavy metals inclusion into the environment has become a major concern for the environmentalists. These are most deleterious pollutants and cause phytotoxicity in plants. Heavy metal accumulation in plants results in generation of oxidative stress. Salicylic acid (SA) is an imperative endogenous plant hormone. It has a crucial role in regulation of various physiological and metabolic processes in plants. It is considered as one of the most important signaling molecule involved in both abiotic and biotic stress tolerance. Application of optimal concentrations of SA enhances plants’ tolerance to heavy metal stress by modulating levels of several metabolites including components of antioxidative defense cascade, osmolytes, secondary metabolites, and metal-chelating compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrousheh M, Tehranifar A, Shoor M, Safari VR (2015) Salicylic acid alleviates the copper toxicity in Tagetes erecta. Int J Farming Allied Sci 4:232–238

    Google Scholar 

  • Aghaeifard F, Babalar M, Fallahi E, Ahmadi A (2016) Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria Ă— Ananassa duch.) cv. Camarosa. J Plant Nutr 39:1821–1829

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77(1):36–44

    Article  CAS  Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  • Ali E, Maodzeka A, Hussain N, Shamsi IH, Jiang L (2015) The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid. Plant Growth Regul 75(3):641–655

    Article  CAS  Google Scholar 

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236:123–128

    Article  CAS  Google Scholar 

  • Alyemeni MN, Hayat Q, Wijaya L, Hayat S (2014) Effect of salicylic acid on the growth, photosynthetic efficiency and enzyme activities of leguminous plant under cadmium stress. Not Bot Hortic Agrobo Cluj Napoca 42(2):440–445

    CAS  Google Scholar 

  • Asati SR (2013) Treatment of waste water from parboiled rice mill unit by coagulation/flocculation. Int J Life Sci Biotechnol Pharm Res 2:264–277

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bai X, Dong Y, Kong J, Xu L, Liu S (2014) Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul 75:695–706

    Article  CAS  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68(2):175–179

    Google Scholar 

  • Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaibi W, Djebali W (2014) Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.) J Plant Interact 9(1):647–654

    Article  CAS  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F, Ahmad MS (2014) Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res 21:717–731

    Article  CAS  Google Scholar 

  • Chen J, Zhu C, Li L-P, Sun Z-Y, Pan X-B (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19(1):44–49

    Article  CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang Y, Wang C, LĂĽ W, Jin JB, Hua X (2011) Proline induces calcium-mediated oxidative burst and salicylic acid signaling. Amino Acids 40:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 11:5868–5923

    Article  CAS  Google Scholar 

  • Chong J, Pierrel M-A, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan PS (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1268

    Google Scholar 

  • Cui W, Fang P, Zhu K, Mao Y, Gao C et al (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105:103–111

    Article  CAS  PubMed  Google Scholar 

  • Das R, Jayalekshmy VG (2015) Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J Glob Biosci 4(7):2678–2698

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products, a biosynthetic approach, 2nd edn. Wiley, Chichester, p 507

    Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10(1):151

    Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148(2–3):99–104

    Article  CAS  PubMed  Google Scholar 

  • DuÄŤaiová Z, PetruÄľová V, Repčák M (2013) Salicylic acid regulates secondary metabolites content in leaves of Matricaria chamomilla. Biologia 68:904–909

    Article  CAS  Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74

    Article  CAS  PubMed  Google Scholar 

  • El-Tayeb MA, El-Enany AE, Ahmed NL (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.) Plant Growth Regul 50(2):191–199

    Article  CAS  Google Scholar 

  • Espanany A, Fallah S (2016) Seed germination of dill (Anethum graveolens L.) in response to salicylic acid and halopriming under cadmium stress. Iran J Plant Physiol 6(3):1702–1713

    Google Scholar 

  • Fatima RN, Javed F, Wahid A (2014) Salicylic acid modifies growth performance and nutrient status of rice (Oryza sativa) under cadmium stress. Int J Agric Biol 16(6):1083–1090

    CAS  Google Scholar 

  • Ferrari S, Plotnokova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  CAS  PubMed  Google Scholar 

  • Gaballah MS, Rady MM (2012) Salicylic acid mitigates cadmium toxicity by attenuating the oxidative stress in pea (Pisum sativum L.) plants. Int J Biol Ecol Environ Sci 1:159–165

    Google Scholar 

  • Gaille C, Kast P, Hass D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775

    Article  CAS  PubMed  Google Scholar 

  • Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem 278:16893–16898

    Article  CAS  PubMed  Google Scholar 

  • Garcion C, MĂ©traux J-P (2006) Salicylic acid. In: Hedden P, Thomas SG (eds) Plant hormone signaling, vol 24, Annual reviews. Blackwell Press, Oxford, pp 229–257

    Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, MĂ©traux J-P (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of the Arabidopsis. Plant Physiol 147:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghani A, Khan I, Ahmed I, Mustafa I, Abd-Ur-Rehman et al (2015) Amelioration of lead toxicity in Pisum sativum (L.) by foliar application of salicylic acid. J Environ Anal Toxicol 5(292):2161–0525

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930.

    Google Scholar 

  • Gondor OK, Pál M, Darko E, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.) PLoS One 11(8):e0160157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Meng L, Mao P-C, Jia Y-Q, Shi Y-J (2013) Role of exogenous salicylic acid in alleviating cadmium-induced toxicity in Kentucky bluegrass. Biochem Syst Ecol 50:269–276

    Article  CAS  Google Scholar 

  • Han Y, Chen G, Chen Y, Shen Z (2015) Cadmium toxicity and alleviating effects of exogenous salicylic acid in Iris hexagona. Bull Environ Contam Toxicol 95(6):796–802

    Article  CAS  PubMed  Google Scholar 

  • He J, Ren Y, Pan X, Yan Y, Zhu C, Jiang D (2010) Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J Plant Nutr Soil Sci 173(2):300–305

    Article  CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyoma H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Hossain AKMZ, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163(1):39–47

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar R, Khan MI, Masood A, Khan NA (2011) Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MI (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar R, Umar S (2016) Evaluating the importance of proline in cadmium tolerance and its interaction with phytohormones. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 129–153

    Google Scholar 

  • Jazi SB, Oregani KE (2014) Impact of salicylic acid on the growth and photosynthetic pigment of canola (Brassica napus L.) under lead stress. Intl J Biosci 4(10):290–297

    Google Scholar 

  • Jazi SB, Yazdi HL, Ranjbar M (2011) Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. Okapi Iran J Plant Physiol 1(3):177–185

    Google Scholar 

  • Kafel A, NadgĂłrska-Socha A, Gospodarek J, BabczyĹ„ska A, Skowronek M, Kandziora M, Rozpendek K (2010) The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci Total Environ 408:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Kandziora-Ciupa M, CiepaĹ‚ R, NadgĂłrska-Socha A, Barczyk G (2013) A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted area. Environ Sci Pollut Res 20:4920–4932

    Article  CAS  Google Scholar 

  • Keshavarz H, Sanavy SA, Moghadam RS (2016) Impact of foliar application with salicylic acid on biochemical characters of canola plants under cold stress condition. Not Sci Biol 8:98–105

    Article  Google Scholar 

  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:51. https://doi.org/10.1186/1471-2180-13-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mung bean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khokon MD, Okuma EI, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Gruz J, Hedbavny J, Klejdus B, Strnad M (2009) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backora M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  • Lan T, You J, Kong L, Yu M, Liu M, Yang Z (2016) The interaction of salicylic acid and Ca 2+ alleviates aluminum toxicity in soybean (Glycine max L.) Plant Physiol Biochem 98:146–154

    Article  CAS  PubMed  Google Scholar 

  • Leal-Alvarado DA, Espadas-Gil F, Sáenz-Carbonell L, Talavera-May C, SantamarĂ­a JM (2016) Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol 171:37–47

    Article  CAS  PubMed  Google Scholar 

  • Lee H-I, LeĂłn J, Raskin I (1995) Biosynthesis and mechanism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeĂłn J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103:323–328

    Article  PubMed  PubMed Central  Google Scholar 

  • LeĂłn J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  PubMed  Google Scholar 

  • Llugany M, Martin SR, BarcelĂł J, Poschenrieder C (2013) Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32(8):1243–1249

    Article  CAS  PubMed  Google Scholar 

  • LĂłpez-Orenes A, MartĂ­nez-PĂ©rez A, CalderĂłn AA, Ferrer MA (2014) Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiol Biochem 84:57–64

    Article  PubMed  CAS  Google Scholar 

  • Luo YL, Su ZL, Bi TJ, Cui XL, Lan QY (2014) Salicylic acid improves chilling tolerance by affecting antioxidant enzymes and osmoregulators in sacha inchi (Plukenetia volubilis). Braz J Bot 37(3):357–363

    Article  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Plants and heavy metals. Springer, Dordrecht, pp 27–53

    Google Scholar 

  • MarciĹ„ska I, CzyczyĹ‚o-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, WaligĂłrski P, JuzoĹ„ K, Cyganek K (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller A, Cramer M (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1999) Effect of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    Article  CAS  Google Scholar 

  • Mishra A, Tripathi BD (2008) Heavy metal contamination of soil, and bioaccumulation in vegetables irrigated with treated waste water in the tropical city of Varanasi, India. Toxicol Environ Chem 90(5):861–871

    Article  CAS  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Misra R (2012) Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. Am Eurasian J Agric Environ Sci 12:1601–1609

    CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizukami H, Konoshima M, Tabata M (1977) Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16:1183–1186

    Article  CAS  Google Scholar 

  • Mohsenzadeh S, Shahrtash M, Mohabatkar H (2011) Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iranian J Sci Technol 35(1):57–60

    Google Scholar 

  • Moradkhani S, Ali KN, Dilmaghani K, Chaparzadeh N (2012) Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J Stress Physiol Biochem 8(4):78–89

    Google Scholar 

  • Mourato M, Reis R, Martins ML (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. Adv Sel Plant Physiol Asp 23–44

    Google Scholar 

  • Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54(2):315–320

    Article  CAS  Google Scholar 

  • Nadgorska-Socha A, Kandziora-Ciupa M, CiepaĹ‚ R, Walasek K (2011) Effect of Zn, Cd, Pb on physiological response of Silene vulgaris plants from selected population. Pol J Environ Stud 20:599–604

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186(1):565–574

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Takeuchi Y, Miyanaga K, Seki M, Furusaki S (1999) High anthocyanin accumulation in dark by strawberry (Fragaria ananassa) callus. Biotechnol Lett 21:695–699

    Google Scholar 

  • Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40:351–358

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751. https://doi.org/10.1080/15592324.2014.1003751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2006) The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotechnol 23:395–398

    Article  CAS  Google Scholar 

  • Ohlsson AB, Berglund T (1989) Effect of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol 135:505–507

    Article  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22(4):656–670

    Article  CAS  PubMed  Google Scholar 

  • Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34(3–4):133–148

    CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Ivanova A, Stoinova Z (2012) Role of salicylic acid in alleviating heavy metal stress. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 447–466

    Chapter  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:11

    Google Scholar 

  • Ratushnyak AY, Ratushnyak AA, Andreeva MG, Kayumov AR, Bogachev MI, Trushin MV (2012) Effect of lead and salicylic acid on some plant growth parameters in Pisum sativum L. World App Sci J 19(8):1157–1159

    CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Raza SH, Shafiq F (2013) Exploring the role of salicylic acid to attenuate cadmium accumulation in radish (Raphanus sativus). Int J Agric Biol 15(3):547–552

    CAS  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Sangwan P, Kumar V, Joshi UN (2014) Effect of chromium (VI) toxicity on enzymes of nitrogen metabolism in cluster bean (Cyamopsis tetragonoloba L.). Enzym Res. Article ID:784036

    Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism. Chapman and Hall (Kluwer Academic Publishers), Boston, p 711

    Book  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 3:447–453

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot (2012): 217037, 26 pages

    Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31(5):969–977

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Ali HM, Sakran AM, Basalah MO, AlKhaishany MY (2013) Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Aust J Crop Sci 7(11):1780–1788

    Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hort 176:1–10

    Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 99:11640–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M et al (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. PNAS 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava MK, Dwivedi UN (2000) Delayed ripening of banana fruit by salicylic acid. Plant Sci 158(1–2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    Article  CAS  PubMed  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    Article  CAS  Google Scholar 

  • Trejo-Tapia G, Jimenez-Aparicio A, Rodriguez-Monroy M, De Jesus-Sanchez A, Gutierrez-Lopez G (2001) Influence of cobalt and other microelements on the production of betalains and the growth of suspension cultures of Beta vulgaris. Plant Cell Tissue Organ Cult 67:19–23

    Article  CAS  Google Scholar 

  • Tufail A, Arfan M, Gurmani AR, Khan AB, Bano A (2013) Salicylic acid induced salinity tolerance in maize (Zea mays). Pak J Bot 45:75–82

    CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  CAS  PubMed  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJM (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11:89. https://doi.org/10.1186/1471-2229-11-89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. https://doi.org/10.1186/1471-2229-10-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhang S, Wang P, Hou J, Qian J, Ao Y, Lu J, Li L (2011) Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress. Chemosphere 84:136–142

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu J, Qin G, Cui H, Wang Q (2012) Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 90:845–855

    Article  CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul 32(4):721–731

    Article  CAS  Google Scholar 

  • Wasti S, Mimouni H, Smiti S, Zid E, Ben Ahmed H (2012) Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. Omics J Integr Biol 16:200–207

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder T, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. Article ID 402647

    Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY (2015) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol Plant 59(1):171–182

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffell PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Cong G, Zhang J (2014) Effects of exogenous salicylic acid on polysaccharides production of Dendrobium officinale. S Afr J Bot 95:78–84

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 19:8–18

    Article  CAS  Google Scholar 

  • Zengin F (2015) Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. J Environ Biol 36(1):249

    Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.) Protoplasma 2(3):911–924

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbas AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohli, S.K. et al. (2017). Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_7

Download citation

Publish with us

Policies and ethics