Skip to main content

Abstract

In recent years, soil contamination has become a global environmental problem. Biochar is a porous and carbon-rich material produced from pyrolysis of biomass residues from agricultural and forestry production. It can be used to immobilize heavy metals and organic pollutants in soil through adsorption. Here we report results obtained from our recent studies focusing on the interactions between biochar and soil contaminants. Incubation and pot experiments were carried out to investigate the effect of biochar type, application rate, and particle size on soil properties, bioavailability, mobility, and redistribution of the heavy metals in soil and the accumulation of heavy metals in the plants. Batch equilibration method was used to explore the effect of biochar type, aging process, dosage, and soil organic carbon content on adsorption and desorption of organic pollutants (e.g., phthalic acid esters, or PAEs) in soil. Incubation and pot trials were conducted to evaluate the impact of biochar on the degradation and bioavailability of PAEs in soils. Our results demonstrate that biochar can potentially be used as soil amendment for remediation of soils contaminated with heavy metals and organic pollutants. The efficacy of biochar application on immobilization of contaminants varies with the type, application rate, and particle size of biochars, soil properties, and contaminant types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersson S, Nilsson SI, Saetre P (2000) Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol Biochem 32(1):1–10

    Article  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    Article  CAS  Google Scholar 

  • Bornemann LC, Kookana RS, Welp G (2007) Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67(5):1033–1042

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126(2):157–167

    Article  CAS  Google Scholar 

  • Cesarino I, Araújo P, Domingues Júnior AP et al (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Rev Bras Bot 35(4):303–311

    Article  Google Scholar 

  • Deng W, Van Zwieten L, Lin Z et al (2017) Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. J Soils Sediments 17:632–640

    Article  CAS  Google Scholar 

  • Dong D, Yang M, Wang C et al (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soils Sediments 13(8):1450–1460

    Article  CAS  Google Scholar 

  • Fan S, He L, Qin H et al (2016) Effect of biochar on diversity of microbial community in soils contaminated with dibutyl phthalate (in Chinese). Acta Sci Circumst 36(5):1800–1809

    CAS  Google Scholar 

  • Guo X, Lu K, Hu G et al (2017) Effect of dead pig and bamboo biochars on greenhouse soil properties and vegetable yield. J Zhejiang A & F Univ 34(2):244–252

    Google Scholar 

  • Haghseresht F, Lu GQ, Whittaker AK (1999) Carbon structure and porosity of carbonaceous adsorbents in relation to their adsorption properties. Carbon 37(9):1491–1497

    Article  CAS  Google Scholar 

  • He L, Gielen G, Bolan NS et al (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35(2):519–534

    Article  CAS  Google Scholar 

  • He L, Fan S, Müller K et al (2016) Biochar reduces the bioavailability of di- (2-ethylhexyl) phthalate in soil. Chemosphere 142:24–27

    Article  CAS  Google Scholar 

  • Hu G, Yang X, Chen X, Lu K et al (2016a) Physiological responses of bamboo-willow plants to heavy metal stress (in Chinese). Acta Sci Circumst 36(10):3870–3875

    CAS  Google Scholar 

  • Hu G, Yu Y, Yang X et al (2016b) Uptake, accumulation and translocation of Cadmium in Bamboo-willow Plant (in Chinese). Acta Sci Circumst 36(4):1508–1514

    CAS  Google Scholar 

  • Huang JH, Hsu SH, Wang SL (2011) Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils. J Hazard Mater 186(2):1801–1807

    Article  CAS  Google Scholar 

  • Katayama A, Bhula R, Burns GR et al (2010) Bioavailability of xenobiotics in the soil environment//reviews of environmental contamination and toxicology. Springer, New York, pp 1–86

    Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Res 48(7):627–637

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota-a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Liu Y, Yang M, Wu Y et al (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11(6):930–939

    Article  CAS  Google Scholar 

  • Liu J, Yang X, Lu K et al (2015) Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil (in Chinese). Acta Sci Circumst 35:3679–3687

    CAS  Google Scholar 

  • Lu K, Yang X, Shen J et al (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Lu K, Yang X, Gielen G et al (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292

    Article  CAS  Google Scholar 

  • Park JH, Choppala GK, Bolan NS et al (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348(1–2):439–451

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1995) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11

    Article  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF et al (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749

    Article  CAS  Google Scholar 

  • Sun T, Mao X, Lu K, Wang H (2015) Removal of heavy metals from co-contaminated soil by washing with citric acid (in Chinese). Acta Sci Circumst 35(8):2573–2581

    CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  • Wang H, Lin K, Hou Z et al (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10(2):283–289

    Article  CAS  Google Scholar 

  • Wu W, Yang M, Feng Q et al (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  • Xu G, Li F, Wang Q (2008) Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di- (2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ 393(2):333–340

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L et al (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20(1):358–368

    Article  CAS  Google Scholar 

  • Xu Q, Gu G, Zhang M (2015) Promoting antibiotics degradation via application of organic fertilizers organic fertilizers. Acta Agric Zhejiangensis 27:417–422

    Google Scholar 

  • Yang X, Liu J, McGrouther K et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23(2):974–984

    Article  CAS  Google Scholar 

  • Yang X, Lu K, McGrouther K et al (2017) Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. J Soils Sediments 17:751–762

    Article  CAS  Google Scholar 

  • Yemadje PL, Guibert H, Bernoux M, Deleporte P, Chevallier T, (2015) Dry-wet cycles affect carbon mineralization of soil. International conference agroecology for Africa-Afa

    Google Scholar 

  • Žemberyová M, Bartekova J, Hagarova I (2006) The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta 70(5):973–978

    Article  Google Scholar 

  • Zhang H, Lin K, Wang H et al (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158(9):2821–2825

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L et al (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20(12):8472–8483

    Article  CAS  Google Scholar 

  • Zhang X, He L, Sarmah AK et al (2014) Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J Soils Sediments 14(11):1790–1799

    Article  CAS  Google Scholar 

  • Zhang X, Sarmah AK, Bolan NS et al (2016) Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34

    Article  CAS  Google Scholar 

  • Zheng RL, Cai C, Liang JH et al (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89(7):856–862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were funded by the National Natural Science Foundation of China (21577131; 4171337); the Key Program of the Zhejiang Provincial Natural Science Foundation, China (LZ15D010001); Zhejiang A & F University Research and Development Fund (2010FR097 and 2012FK031); the Science and Technology Foundation of the Guizhou Province, China ([2013]2193); the Scientific Research and Technology Development Foundation of Bijie Yancao Company of Guizhou Province, China (BJYC-201308); and the Special Funding for the Introduced Innovative R&D Team of Dongguan (2014607101003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H. et al. (2018). Using Biochar for Remediation of Contaminated Soils. In: Luo, Y., Tu, C. (eds) Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_47

Download citation

Publish with us

Policies and ethics