Skip to main content

Liquid Metal Enabled Skin Electronics

  • Chapter
  • First Online:
Liquid Metal Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 10))

  • 1336 Accesses

Abstract

This chapter presents the basic principle of the conformal epidermal printed electronics based on the liquid metal to achieve the immediate contact between skin surface and electrode. The remarkable features of the liquid metal skin electronics, such as high conformability, good conductivity, better signal stability and fine biocompatibility were discussed. A series of typical applications on disease therapy or health care were given as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo C, Yu Y, Liu J (2014) Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B 2:5739–5745

    Article  CAS  Google Scholar 

  2. Kim DH, Lu NS, Ma R et al (2011) Epidermal electronics. Science 333:838–843

    Article  CAS  Google Scholar 

  3. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826

    Article  CAS  Google Scholar 

  4. Maheshwari V, Saraf RF (2006) High-resolution thin film device to sense texture by touch. Science 312:1501–1504

    Article  CAS  Google Scholar 

  5. Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832

    Article  CAS  Google Scholar 

  6. Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Bao ZN (1859) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 2013:4

    Google Scholar 

  7. Webb RC, Bonifas AP, Behnaz A, Zhang YH, Yu KJ, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944

    Article  CAS  Google Scholar 

  8. Lin P, Yan F (2012) Organic thin film transistors for chemical and biological sensing. Adv Mater 24:34–51

    Article  CAS  Google Scholar 

  9. Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. IEEE Sens J 1(1):41–51

    Article  CAS  Google Scholar 

  10. Jeong GS, Baek DH, Jung HC et al (2012) Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat Commun 3:977

    Article  CAS  Google Scholar 

  11. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911

    Article  CAS  Google Scholar 

  12. Yoshioka Y, Jabbour GE (2006) Desktop inkjet printer as a tool to print conducting polymers. Synth Met 156:779–783

    Article  CAS  Google Scholar 

  13. Yu RM, Lin D, Pan CF, Niu SM, Liu HF, Wang ZL (2012) Effect on the transport properties of GaN nanobelts for active flexible electronics. Adv Mater 24:3532–3537

    Article  CAS  Google Scholar 

  14. Gao YX, Li HY, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-6

    Article  CAS  Google Scholar 

  15. Zheng Y, He ZZ, Gao YX, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1–1786-7

    Google Scholar 

  16. Cheng S, Wu ZG (2010) Microfluidic stretchable RF electronics. Lab Chip 10:3227–3244

    Article  CAS  Google Scholar 

  17. Kong TF, Peng WK, Luong TD, Nguyen NT, Han J (2012) Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab Chip 12:287–294

    Article  CAS  Google Scholar 

  18. Zhang B, Dong Q, Korman CE, Li ZY, Zaghloul ME (1098) Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci Rep 2013:3

    Google Scholar 

  19. Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771–16

    Article  CAS  Google Scholar 

  20. Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3:112117-1–112117-6

    Article  CAS  Google Scholar 

  21. Jin C., Zhang J., Li X. K., Yang X. Y., Li J. J., Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442-1-7

    Google Scholar 

  22. Kaydanova T, Miedaner A, Perkins JD, Curtis C, Alleman JL, Ginley DS (2007) Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits. Thin Solid Films 515:820–3824

    Article  CAS  Google Scholar 

  23. Hansen TS, West K, Hassager O, Larsen NB (2007) Direct fast patterning of conductive polymers using agarose stamping. Adv Mater 19:3261

    Article  CAS  Google Scholar 

  24. Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Func Mater 20:28–35

    Article  CAS  Google Scholar 

  25. Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM, Harris KD (2013) Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells 110:98–106

    Article  CAS  Google Scholar 

  26. Akhavan VA, Goodfellow BW, Panthani MG, Reid DK, Hellebusch DJ, Adachi T, Korgel BA (2010) Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy Environ Sci 3:1600–1606

    Article  CAS  Google Scholar 

  27. Dong TY, Chen WT, Wang CW et al (2009) One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films. Phys Chem Chem Phys 11:6269–6275

    Article  CAS  Google Scholar 

  28. Zhang Q, Gao YX, Liu J (2013) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116:1091–1097

    Article  CAS  Google Scholar 

  29. Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal ink (DREAM Ink): a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340

    Article  Google Scholar 

  30. Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21:151–173

    Article  CAS  Google Scholar 

  31. Thaker NV (1999) Biopotentials and electrophysiology measurement. In: Webster JG (ed) The measurement, instrumentation and sensors handbook. CRC Press, Boca Raton, pp 74-1–74-19

    Google Scholar 

  32. Chi YM, Wang YT, Wang Y et al (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:228–235

    Article  Google Scholar 

  33. Chi YM, Cauwenberghs G (2010) Wireless non-contact EEG/ECG electrodes for body sensor networks. In: International conference on body sensor networks (BSN). IEEE Press, Singapore, pp 297–301

    Google Scholar 

  34. Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. In: Sixth international workshop on wearable and implantable body sensor networks (BSN 2009). IEEE Press, Berkeley, pp 246–250

    Google Scholar 

  35. Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-16

    Article  CAS  Google Scholar 

  36. Matula RA (1979) Electrical resistivity of copper, gold, palladium and silver. J Phys Chem Ref Data 8:1147–1298

    Article  CAS  Google Scholar 

  37. Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill Inc., New York, p 1291

    Google Scholar 

  38. Ivanoff CS, Ivanoff AE, Hottel TL (2012) Gallium poisoning: a rare case report. Food Chem Toxicol 50:212–215

    Article  CAS  Google Scholar 

  39. Cadwallader LC (2003) Gallium safety in the laboratory. Energy Facility Contractors Group (EFCOG) Safety Analysis Working Group (SAWG) 2003 Annual Meeting, INEEL/CON-03-00078 Preprint

    Google Scholar 

  40. Dunne SM, Abraham R (2000) Dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189:310–313

    CAS  Google Scholar 

  41. Chen WC, Tsai KD, Chen CH et al (2012) Role of Gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Intern Emerg Med 7:53–58

    Article  Google Scholar 

  42. Hagemeister FB, Fesus SM, Lamki LM, Haynie TP (1990) Role of the gallium scan in Hodgkin’s disease. Cancer 65:1090–1096

    Article  CAS  Google Scholar 

  43. Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108

    Article  CAS  Google Scholar 

  44. Cherepenin VA, Karpov AY, Korjenevsky AV et al (2002) Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans Med Imaging 21:602–607

    Article  Google Scholar 

  45. Cherepenin VA, Karpov AY, Korjenevsky AV et al (2001) A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol Meas 22:9–18

    Article  CAS  Google Scholar 

  46. Seligman PA, Moran PL, Schleicher RB, Crawford ED (1992) Treatment with gallium nitrate: evidence for interference with iron metabolism in vivo. Am J Hematol 41:232–240

    Article  CAS  Google Scholar 

  47. Martens RJ, Harrington JR, Cohen ND et al (2006) Gallium therapy: a novel metal-based antimicrobial strategy for potential control of Rhodococcus equi foal pneumonia. AAEP Proc 52:219–221

    Google Scholar 

  48. Wang X, Zhang Y, Guo R, Wang H, Yuan B, Liu J (2018) Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment. J Micromech Microeng 28:034003

    Article  Google Scholar 

  49. Shimizu H (2007) Shimizu’s textbook of dermatology, 1st edn. (Chap. 1). Nakakyama Shoten, Hokkaido University Press, Sapporo City, Japan

    Google Scholar 

  50. Kletenik YB, Aleksandrova TP (1997) Submicron regeneration of the working surface of indicator electrodes: regeneration of metal electrodes. J Anal Chem 52(7):680–682

    CAS  Google Scholar 

  51. Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. In: Methods for neural ensemble recordings, 2nd edn., pp 361–371

    Google Scholar 

  52. Lee H, Kim HB, Im TG, Jeong JI, Ahn S (2003) Characterization of platinum electrode using unbalanced magnetic field sputter for implantable biomedical applications. Plasma Science. In: The 30th International Conference on IEEE Conference Record-Abstracts. ICOPS 2003. IEEE. doi: 10.1109 (2003)

    Google Scholar 

  53. Wu F, Wang L, Zou J, Huang X, Yuan X (2012) Clinical features, mutation of the GNAS1 and pathogenesis of progressive osseous heteroplasia. Chin J Pediatr 50(1):10–14

    Google Scholar 

  54. Cömert A, Honkala M, Hyttinen J (2013) Effect of pressure and padding on motion artifact of textile electrodes. Biomed Eng Online 12:26

    Article  Google Scholar 

  55. He L, Lin D, Wang Y, Xiao Y, Che J (2011) Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf B 87:273–279

    Article  CAS  Google Scholar 

  56. Bera SC, Chattopadhyay S, Chakraborty B (2004) An experimental analysis of the non-linear behaviour of a bio-electrode polarisation impedance with excitation frequency. Measurement 35:363–370

    Article  Google Scholar 

  57. Plam U, Keeser D, Schiller C, Fintescu Z, Nitsche M, Reisinger E, Padberg F (2008) Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul 1:386–387

    Article  Google Scholar 

  58. Ahadian S, Ramón-Azcón J, Ostrovidov S et al (2013) A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomed Microdevice 15:109–115

    Article  CAS  Google Scholar 

  59. Esibov A, Chapman FW, Melnick SB, Sullivan JL, Walcott GP (2015) Minor variations in electrode pad placement impact defibrillation success. Prehospital Emerg Care 20:292–298

    Article  Google Scholar 

  60. Killingsworth CR, Melnick SB, Litovsky SH, Ideker RE, Walcott GP (2013) Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter defibrillator in Swine. Pacing Clin Electrophysiol 36(10):1265–1272

    Google Scholar 

  61. Martins AC, Moreira A, Machado AV, Vaz F, Fonseca C, Nóbrega JM (2015) Development of polymer wicks for the fabrication of bio-medical sensors. Mater Sci Eng C 49:356–363

    Article  CAS  Google Scholar 

  62. Xu S, Dai M, Xu C, Chen C, Tang M, Shi X, Dong X (2011) Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography. Ann Biomed Eng 39:2059–2067

    Article  Google Scholar 

  63. Abellán-Llobregat A, Jeerapan I, Bandodkar A, Wang J, Morallón E (2017) A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens Bioelectron 91:885–891

    Article  CAS  Google Scholar 

  64. Mishra RK, Hubble LJ, Martín A, Kumar R, Wang J (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens 2:553–561

    Article  CAS  Google Scholar 

  65. Zhang Y, Webb RC, Luo H et al (2016) Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv Healthcare Mater 5:119–127

    Article  CAS  Google Scholar 

  66. Webb RC, Ma Y, Krishnan S, Li Y, Yoon S, Guo X, Feng X, Rogers JA (2015) Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv 1(9):e1500701

    Article  CAS  Google Scholar 

  67. Gao L, Zhang Y, Malyarchuk V, Jia L, Jang KI, Webb RC, Rogers JA (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5. doi:10.1038

    Google Scholar 

  68. Huang X, Liu Y, Chen K, Shin WJ, Lu CJ, Kong GW, Rogers JA (2014) Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10:3083–3090

    Article  CAS  Google Scholar 

  69. Neuman MR (1997) Biopotential electrodes. In: Webster JG (ed) Medical instrumentation: application and design, 3rd edn. Wiley, New York, pp 183–232

    Google Scholar 

  70. Kim J, Salvatore GA, Araki H, Chiarelli AM, Xie Z, Banks A, Rogers JA (2016) Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2(8):e1600418

    Article  Google Scholar 

  71. http://datasheets.scbt.com/sc-257605.pdf

  72. Li J, Guo C, Wang Z, Gao K, Shi X, Liu J (2016) Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. Clin Transl Med 5(1):1–7

    Article  Google Scholar 

  73. Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202

    Article  Google Scholar 

  74. Schneiderman RS, Shmueli E, Kirson ED, Palti Y (2010) TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters. BMC Cancer 10:229

    Article  CAS  Google Scholar 

  75. Kirson ED, Schneiderman RS, Dbalý V et al (2009) Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med Phys 9:1

    Article  Google Scholar 

  76. Kirson ED, Gurvich Z, Schneiderman R et al (2004) Disruption of cancer cell replication by alternating electric fields. Can Res 64:3288–3295

    Article  CAS  Google Scholar 

  77. Kirson ED, Giladi M, Gurvich Z et al (2009) Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metas 26:633–640

    Article  Google Scholar 

  78. Guo C, Yi L, Yu Y, Liu J (1070) Electrically induced reorganization phenomena of liquid metal film printed on biological skin. Appl Phys A 2016:122

    Google Scholar 

  79. Guo R, Wang X, Yu W, Tang J, Liu J (2018) A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Technol Sci. https://doi.org/10.1007/s11431-018-9253-9

    Article  Google Scholar 

  80. Guo R, Wang X, Chang H, Yu W, Liang S, Rao W, Liu J (2018) Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater. https://doi.org/10.1002/adem.201800054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yi, L. (2018). Liquid Metal Enabled Skin Electronics. In: Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-5607-9_12

Download citation

Publish with us

Policies and ethics