Skip to main content

Abstract

Therapeutic drug monitoring (TDM) is a clinical science centered around the quantification of drug concentrations in body fluids. To be considered candidates for TDM drugs must possess certain characteristics, including a narrow therapeutic index; in other words, to avoid toxicity at clinical doses. The relationship between dose and systemic concentration is particularly poor and unpredictable in special populations liable to different or dynamically changing pharmacokinetics. Antimicrobial use in the critical care setting has received special attention, where adequate concentrations for efficacy are especially pertinent. This chapter reviews recent evidence for TDM of established candidate drugs, aminoglycosides and vancomycin, and emerging evidence for beta-lactams, fluoroquinolones, linezolid, colistin and daptomycin, in the critically ill patient. The use of dose adaptation software for dose adjustment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dasgupta A (2012) Introduction to therapeutic drug monitoring. Frequently and less frequently monitored drugs. In: Therapeutic drug monitoring, 1st edn. Elsevier, New York, p 1–29

    Google Scholar 

  2. Walson PD (1998) Therapeutic drug monitoring in special populations. Clin Chem 44:415–419

    CAS  PubMed  Google Scholar 

  3. Roberts JA, Abdul-Aziz MH, Lipman J et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509. doi:10.1016/S1473-3099(14)70036-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fish DN, Piscitelli SC, Danziger LH (1995) Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy 15:279–291

    CAS  PubMed  Google Scholar 

  5. Pea F, Cojutti P, Sbrojavacca R et al (2011) TDM-guided therapy with daptomycin and meropenem in a morbidly obese, critically ill patient. Ann Pharmacother 45:e37. doi:10.1345/aph.1P745

    Article  PubMed  Google Scholar 

  6. Taccone FS, Cotton F, Roisin S et al (2012) Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob Agents Chemother 56:2129–2131. doi:10.1128/AAC.06389-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shipkova M, Svinarov D (2016) LC-MS/MS as a tool for TDM services: where are we? Clin Biochem 49:1009–1023. doi:10.1016/j.clinbiochem.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Veringa A, Ter Avest M, Span LFR et al (2017) Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother 72:261–267. doi:10.1093/jac/dkw349

    Article  PubMed  Google Scholar 

  10. Beal S, Sheiner LB, Boeckmann A, Bauer A (2009) NONMEM user’s guides (1989–2009). Icon Development Solutions, Ellicott City

    Google Scholar 

  11. Fuchs A, Csajka C, Thoma Y et al (2013) Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet 52:9–22. doi:10.1007/s40262-012-0020-y

    Article  CAS  PubMed  Google Scholar 

  12. Jelliffe RW (1991) The USC*PACK PC programs for population pharmacokinetic modeling, modeling of large kinetic/dynamic systems, and adaptive control of drug dosage regimens. Proc Symp Comput Appl Med Care: 922–924

    Google Scholar 

  13. LAPK (2016) BestDose Software. http://www.lapk.org/bestdose.php. Accessed 28 Dec 2016

  14. Proost JH, Meijer DK (1992) MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med 22:155–163

    Article  CAS  PubMed  Google Scholar 

  15. RxKinetics (2016) RxKinetics pharmacokinetics and nutrition software for pharmacists. In: RxKinetics Pharmacokinet. Nutr. Softw. Pharm. http://www.rxkinetics.com/. Accessed 28 Dec 2016

  16. Tharpe R (2016) Complex non-steady-state analysis | RxRick’s Blog. http://rxkinetics.com/blog/?p=1495. Accessed 28 Dec 2016

  17. Lacarelle B, Pisano P, Gauthier T et al (1994) Abbott PKS system: a new version for applied pharmacokinetics including Bayesian estimation. Int J Biomed Comput 36:127–130

    Article  CAS  PubMed  Google Scholar 

  18. T.D.M.S. 2000 (2016) T.D.M.S. 2000TM. http://tdms2000.com/. Accessed 28 Dec 2016

  19. Duffull SB, Kirkpatrick CJ, Van Den Berg L (2016) TCIWorks. In: TCIWorks. tciworks.info. Accessed 2016

  20. DoseMe (2016) DoseMe—personalised medicine: making complex simple. In: DoseMe—Pers. Med. Mak. Complex simple. https://www.doseme.com.au/. Accessed 28 Dec 2016

  21. Limoges University Hospital (2016) Limoges University Hospital Laboratory of Pharmacology. https://pharmaco.chu-limoges.fr/. Accessed 28 Dec 2016

  22. Antibiotic Expert Group (2010) Therapeutic guidelines: antibiotic. Therapeutic Guidelines Limited, Melbourne

    Google Scholar 

  23. Begg EJ, Barclay ML, Kirkpatrick CJ (1999) The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 47:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Begg EJ, Barclay ML (1995) Aminoglycosides—50 years on. Br J Clin Pharmacol 39:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Avent ML, Teoh J, Lees J et al (2011) Comparing 3 methods of monitoring gentamicin concentrations in patients with febrile neutropenia. Ther Drug Monit 33:592–601. doi:10.1097/FTD.0b013e31822c78e9

    CAS  PubMed  Google Scholar 

  26. Martin J, Barras M, Yui NA et al (2012) Gentamicin monitoring practices in teaching hospitals—time to undertake the necessary randomised controlled trial. Clin Toxicol 2:1000146. doi:10.4172/2161-0495.1000146

    Google Scholar 

  27. Hickling K, Begg E, Moore ML (1989) A prospective randomised trial comparing individualised pharmacokinetic dosage prediction for aminoglycosides with prediction based on estimated creatinine clearance in critically ill patients. Intensive Care Med 15:233–237

    Article  CAS  PubMed  Google Scholar 

  28. Sawchuk RJ, Zaske DE (1976) Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J Pharmacokinet Biopharm 4:183–195

    Article  CAS  PubMed  Google Scholar 

  29. Gauthier T, Lacarelle B, Marre F et al (1994) Predictive performance of two software packages (USC*PACK PC and Abbott PKS system) for the individualization of amikacin dosage in intensive care unit patients. Int J Biomed Comput 36:131–134

    Article  CAS  PubMed  Google Scholar 

  30. Mar Fernández de Gatta MD, Victoria Calvo M, Ardanuy R et al (2009) Evaluation of population pharmacokinetic models for amikacin dosage individualization in critically ill patients. J Pharm Pharmacol 61:759–766. doi:10.1211/jpp/61.06.0008

    Article  PubMed  CAS  Google Scholar 

  31. Rodvold KA, Pryka RD, Kuehl PG et al (1990) Bayesian forecasting of serum gentamicin concentrations in intensive care patients. Clin Pharmacokinet 18:409–418

    Article  CAS  PubMed  Google Scholar 

  32. Duffull SB, Kirkpatrick CM, Begg EJ (1997) Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol 43:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gillaizeau F, Chan E, Trinquart L, et al (2013) Computerized advice on drug dosage to improve prescribing practice. Cochrane Database Syst Rev (11):CD002894. doi: 10.1002/14651858.CD002894.pub3

  34. Begg EJ, Atkinson HC, Jeffery GM, Taylor NW (1989) Individualised aminoglycoside dosage based on pharmacokinetic analysis is superior to dosage based on physician intuition at achieving target plasma drug concentrations. Br J Clin Pharmacol 28:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burton ME, Ash CL, Hill DP et al (1991) A controlled trial of the cost benefit of computerized bayesian aminoglycoside administration. Clin Pharmacol Ther 49:685–694

    Article  CAS  PubMed  Google Scholar 

  36. Destache CJ, Meyer SK, Bittner MJ, Hermann KG (1990) Impact of a clinical pharmacokinetic service on patients treated with aminoglycosides: a cost-benefit analysis. Ther Drug Monit 12:419–426

    Article  CAS  PubMed  Google Scholar 

  37. Leehey DJ, Braun BI, Tholl DA et al (1993) Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy. J Am Soc Nephrol JASN 4:81–90

    CAS  PubMed  Google Scholar 

  38. Burton ME, Brater DC, Chen PS et al (1985) A Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther 37:349–357

    Article  CAS  PubMed  Google Scholar 

  39. Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res Int J 5:411–459

    Article  CAS  Google Scholar 

  40. van Lent-Evers NA, Mathôt RA, Geus WP et al (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21:63–73

    Article  PubMed  Google Scholar 

  41. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm 66:82–98. doi:10.2146/ajhp080434

    Article  CAS  PubMed  Google Scholar 

  42. Sakoulas G, Gold HS, Cohen RA et al (2006) Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother 57:699–704. doi:10.1093/jac/dkl030

    Article  CAS  PubMed  Google Scholar 

  43. Tsuji BT, Rybak MJ, Cheung CM et al (2007) Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagn Microbiol Infect Dis 58:41–47. doi:10.1016/j.diagmicrobio.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  44. Tsuji BT, Rybak MJ, Lau KL, Sakoulas G (2007) Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51:1089–1091. doi:10.1128/AAC.00671-06

    Article  CAS  PubMed  Google Scholar 

  45. Cataldo MA, Tacconelli E, Grilli E et al (2012) Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 67:17–24. doi:10.1093/jac/dkr442

    Article  CAS  PubMed  Google Scholar 

  46. Hao J-J, Chen H, Zhou J-X (2016) Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents 47:28–35. doi:10.1016/j.ijantimicag.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  47. Hanrahan T, Whitehouse T, Lipman J, Roberts JA (2015) Vancomycin-associated nephrotoxicity: a meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents 46:249–253. doi:10.1016/j.ijantimicag.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  48. Men P, Li H-B, Zhai S-D, Zhao R-S (2016) Association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness: a systematic review and meta-analysis. PLoS One 11:e0146224. doi:10.1371/journal.pone.0146224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Meng L, Fang Y, Chen Y et al (2015) High versus low vancomycin serum trough regimen for Gram-positive infections: a meta-analysis. J Chemother Florence Italy 27:213–220. doi:10.1179/1973947814Y.0000000182

    Article  CAS  Google Scholar 

  50. Prybylski JP (2015) Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: a meta-analysis of observational studies. Pharmacotherapy 35:889–898. doi:10.1002/phar.1638

    Article  CAS  PubMed  Google Scholar 

  51. Steinmetz T, Eliakim-Raz N, Goldberg E et al (2015) Association of vancomycin serum concentrations with efficacy in patients with MRSA infections: a systematic review and meta-analysis. Clin Microbiol Infect 21:665–673. doi:10.1016/j.cmi.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  52. van Hal SJ, Paterson DL, Lodise TP (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57:734–744. doi:10.1128/AAC.01568-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cano EL, Haque NZ, Welch VL et al (2012) Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP Database. Clin Ther 34:149–157. doi:10.1016/j.clinthera.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  54. Kullar R, Davis SL, Levine DP, Rybak MJ (2011) Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 52:975–981. doi:10.1093/cid/cir124

    Article  CAS  PubMed  Google Scholar 

  55. Lodise TP, Patel N, Lomaestro BM et al (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 49:507–514. doi:10.1086/600884

    Article  CAS  PubMed  Google Scholar 

  56. Wunderink RG, Niederman MS, Kollef MH et al (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 54:621–629. doi:10.1093/cid/cir895

    Article  CAS  PubMed  Google Scholar 

  57. Hidayat LK, Hsu DI, Quist R et al (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144. doi:10.1001/archinte.166.19.2138

    Article  PubMed  Google Scholar 

  58. Jeffres MN, Isakow W, Doherty JA et al (2007) A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther 29:1107–1115. doi:10.1016/j.clinthera.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  59. Minejima E, Choi J, Beringer P et al (2011) Applying new diagnostic criteria for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Antimicrob Agents Chemother 55:3278–3283. doi:10.1128/AAC.00173-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prabaker KK, Tran TP-H, Pratummas T et al (2012) Elevated vancomycin trough is not associated with nephrotoxicity among inpatient veterans. J Hosp Med 7:91–97. doi:10.1002/jhm.946

    Article  PubMed  Google Scholar 

  61. Jager NGL, van Hest RM, Lipman J et al (2016) Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 9:961–979. doi:10.1586/17512433.2016.1172209

    Article  CAS  PubMed  Google Scholar 

  62. Huttner A, Harbarth S, Hope WW et al (2015) Therapeutic drug monitoring of the β-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother 70:3178–3183. doi:10.1093/jac/dkv201

    CAS  PubMed  Google Scholar 

  63. Sime FB, Roberts MS, Peake SL et al (2012) Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2:35. doi:10.1186/2110-5820-2-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wong G, Sime FB, Lipman J, Roberts JA (2014) How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 14:288. doi:10.1186/1471-2334-14-288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ariano RE, Nyhlén A, Donnelly JP et al (2005) Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 39:32–38. doi:10.1345/aph.1E271

    Article  CAS  PubMed  Google Scholar 

  66. Crandon JL, Bulik CC, Kuti JL, Nicolau DP (2010) Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:1111–1116. doi:10.1128/AAC.01183-09

    Article  CAS  PubMed  Google Scholar 

  67. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730. doi:10.1128/AAC.00294-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351. doi:10.1016/j.ijantimicag.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  69. Tam VH, McKinnon PS, Akins RL et al (2002) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 50:425–428

    Article  CAS  PubMed  Google Scholar 

  70. Roberts JA, De Waele JJ, Dimopoulos G et al (2012) DALI: defining antibiotic levels in intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect Dis 12:152. doi:10.1186/1471-2334-12-152

    Article  PubMed  PubMed Central  Google Scholar 

  71. Taccone FS, Laterre P-F, Dugernier T et al (2010) Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14:R126. doi:10.1186/cc9091

    Article  PubMed  PubMed Central  Google Scholar 

  72. Carlier M, Carrette S, Roberts JA et al (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84. doi:10.1186/cc12705

    Article  PubMed  PubMed Central  Google Scholar 

  73. Huttner A, Von Dach E, Renzoni A et al (2015) Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents 45:385–392. doi:10.1016/j.ijantimicag.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  74. Udy AA, Lipman J, Jarrett P et al (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28. doi:10.1186/s13054-015-0750-y

    Article  PubMed  PubMed Central  Google Scholar 

  75. Udy AA, Putt MT, Shanmugathasan S et al (2010) Augmented renal clearance in the intensive care unit: an illustrative case series. Int J Antimicrob Agents 35:606–608. doi:10.1016/j.ijantimicag.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  76. Udy AA, Varghese JM, Altukroni M et al (2012) Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39. doi:10.1378/chest.11-1671

    Article  CAS  PubMed  Google Scholar 

  77. Hites M, Taccone FS, Wolff F et al (2014) Broad-spectrum β-lactams in obese non-critically ill patients. Nutr Diabetes 4:e119. doi:10.1038/nutd.2014.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pea F, Viale P, Cojutti P, Furlanut M (2012) Dosing nomograms for attaining optimum concentrations of meropenem by continuous infusion in critically ill patients with severe gram-negative infections: a pharmacokinetics/pharmacodynamics-based approach. Antimicrob Agents Chemother 56:6343–6348. doi:10.1128/AAC.01291-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Akers KS, Niece KL, Chung KK et al (2014) Modified augmented renal clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J Trauma Acute Care Surg 77:S163–S170. doi:10.1097/TA.0000000000000191

    Article  PubMed  Google Scholar 

  80. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ (2013) Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis 56:272–282. doi:10.1093/cid/cis857

    Article  CAS  PubMed  Google Scholar 

  81. Korbila IP, Tansarli GS, Karageorgopoulos DE et al (2013) Extended or continuous versus short-term intravenous infusion of cephalosporins: a meta-analysis. Expert Rev Anti Infect Ther 11:585–595. doi:10.1586/eri.13.44

    Article  CAS  PubMed  Google Scholar 

  82. Lal A, Jaoude P, El-Solh AA (2016) Prolonged versus intermittent infusion of β-lactams for the treatment of nosocomial pneumonia: a meta-analysis. Infect Chemother 48:81–90. doi:10.3947/ic.2016.48.2.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roberts JA, Abdul-Aziz M-H, Davis JS et al (2016) Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 194:681–691. doi:10.1164/rccm.201601-0024OC

    Article  PubMed  Google Scholar 

  84. Roberts JA, Webb S, Paterson D et al (2009) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37:2071–2078. doi:10.1097/CCM.0b013e3181a0054d

    Article  CAS  PubMed  Google Scholar 

  85. Shiu J, Wang E, Tejani AM, Wasdell M (2013) Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev CD008481. doi: 10.1002/14651858.CD008481.pub2

  86. Teo J, Liew Y, Lee W, Kwa AL-H (2014) Prolonged infusion versus intermittent boluses of β-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents 43:403–411. doi:10.1016/j.ijantimicag.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  87. Yang H, Zhang C, Zhou Q et al (2015) Clinical outcomes with alternative dosing strategies for piperacillin/tazobactam: a systematic review and meta-analysis. PLoS One 10:e0116769. doi:10.1371/journal.pone.0116769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Abdul-Aziz MH, Dulhunty JM, Bellomo R et al (2012) Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2:37. doi:10.1186/2110-5820-2-37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yusuf E, Spapen H, Piérard D (2014) Prolonged vs intermittent infusion of piperacillin/tazobactam in critically ill patients: a narrative and systematic review. J Crit Care 29:1089–1095. doi:10.1016/j.jcrc.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  90. Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shandil RK, Jayaram R, Kaur P et al (2007) Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother 51:576–582. doi:10.1128/AAC.00414-06

    Article  CAS  PubMed  Google Scholar 

  92. Andes DR, Craig WA (1998) Pharmacodynamics of fluoroquinolones in experimental models of endocarditis. Clin Infect Dis 27:47–50

    Article  CAS  PubMed  Google Scholar 

  93. Turnidge J (1999) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 58(Suppl 2):29–36

    Article  CAS  PubMed  Google Scholar 

  94. Lacy MK, Lu W, Xu X, et al (1999) Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. Antimicrob Agents Chemother 43:672–677.

    Google Scholar 

  95. Ambrose PG, Grasela DM, Grasela TH et al (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45:2793–2797. doi:10.1128/AAC.45.10.2793-2797.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kiser TH, Hoody DW, Obritsch MD et al (2006) Levofloxacin pharmacokinetics and pharmacodynamics in patients with severe burn injury. Antimicrob Agents Chemother 50:1937–1945. doi:10.1128/AAC.01466-05

  97. Burgess DS, Hall RG (2007) Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharma-cokinetic data from healthy volunteers and 2002 minimum inhibitory concentra-tion data. Clin Ther 29:1421–1427. doi:10.1016/j.clinthera.2007.07.024

  98. Kiffer CR, Pignatari AC (2011) Pharmacodynamic evaluation of commonly prescribed oral antibiotics against respiratory bacterial pathogens. BMC Infect Dis 11:286. doi:10.1186/1471-2334-11-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fuller JD, Low DE (2005) A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin Infect Dis 41:118–121. doi:10.1086/430829

    Article  PubMed  Google Scholar 

  100. Dunbar LM, Wunderink RG, Habib MP et al (2003) High-dose, short-course levofloxacin for community-acquired pneumonia: a new treatment paradigm. Clin Infect Dis 37:752–760. doi:10.1086/377539

    Article  CAS  PubMed  Google Scholar 

  101. Pea F, Di Qual E, Cusenza A et al (2003) Pharmacokinetics and pharmacodynamics of intravenous levofloxacin in patients with early-onset ventilator-associated pneumonia. Clin Pharmacokinet 42:589–598

    Article  CAS  PubMed  Google Scholar 

  102. Sánchez Navarro A, Colino Gandarillas C-I, Alvarez Lerma F et al (2005) Pharmacokinetics and pharmacodynamics of levofloxacin in intensive care patients. Clin Pharmacokinet 44:627–635

    Article  PubMed  Google Scholar 

  103. Labreche MJ, Frei CR (2012) Declining susceptibilities of gram-negative bacteria to the fluoroquinolones: effects on pharmacokinetics, pharmacodynamics, and clinical outcomes. Am J Health-Syst Pharm 69:1863–1870. doi:10.2146/ajhp110464

    Article  CAS  PubMed  Google Scholar 

  104. Homma T, Hori T, Sugimori G, Yamano Y (2007) Pharmacodynamic assessment based on mutant prevention concentrations of fluoroquinolones to prevent the emergence of resistant mutants of Streptococcus pneumoniae. Antimicrob Agents Chemother 51:3810–3815. doi:10.1128/AAC.01372-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Scaglione F (2002) Can PK/PD be used in everyday clinical practice. Int J Antimicrob Agents 19:349–353

    Article  CAS  PubMed  Google Scholar 

  106. Pea F, Poz D, Viale P et al (2006) Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J Antimicrob Chemother 58:380–386. doi:10.1093/jac/dkl226

    Article  CAS  PubMed  Google Scholar 

  107. Roberts JA, Norris R, Paterson DL, Martin JH (2012) Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 73:27–36. doi:10.1111/j.1365-2125.2011.04080.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao C-H, L-S Y, Zeng S et al (2014) Personalized therapeutics for levofloxacin: a focus on pharmacokinetic concerns. Ther Clin Risk Manag 10:217–227. doi:10.2147/TCRM.S59079

    PubMed  PubMed Central  Google Scholar 

  109. Montay G, Gaillot J (1990) Pharmacokinetics of fluoroquinolones in hepatic failure. J Antimicrob Chemother 26(Suppl B):61–67

    Article  PubMed  Google Scholar 

  110. Alsultan A, An G, Peloquin CA (2015) Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother 59:3800–3807. doi:10.1128/AAC.00341-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Long R, Barrie J, Peloquin CA (2015) Therapeutic drug monitoring and the conservative management of chronic tuberculous empyema: case report and review of the literature. BMC Infect Dis 15:327. doi:10.1186/s12879-015-1093-7

    Article  PubMed  PubMed Central  Google Scholar 

  112. Manika K, Chatzika K, Zarogoulidis K, Kioumis I (2012) Moxifloxacin in multidrug-resistant tuberculosis: is there any indication for therapeutic drug monitoring? Eur Respir J 40:1051–1053. doi:10.1183/09031936.00202411

    Article  CAS  PubMed  Google Scholar 

  113. Lee SH, Seo K-A, Lee YM et al (2015) Low serum concentrations of moxifloxacin, prothionamide, and cycloserine on sputum conversion in multi-drug resistant TB. Yonsei Med J 56:961–967. doi:10.3349/ymj.2015.56.4.961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pranger AD, Kosterink JGW, van Altena R et al (2011) Limited-sampling strategies for therapeutic drug monitoring of moxifloxacin in patients with tuberculosis. Ther Drug Monit 33:350–354. doi:10.1097/FTD.0b013e31821b793c

    Article  CAS  PubMed  Google Scholar 

  115. Di Paolo A, Malacarne P, Guidotti E et al (2010) Pharmacological issues of linezolid: an updated critical review. Clin Pharmacokinet 49:439–447. doi:10.2165/11319960-000000000-00000

    Article  PubMed  Google Scholar 

  116. Dryden MS (2011) Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother 66(Suppl 4):iv7–iv15. doi:10.1093/jac/dkr072

    CAS  PubMed  Google Scholar 

  117. Matsumoto K, Takeshita A, Ikawa K et al (2010) Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction. Int J Antimicrob Agents 36:179–181. doi:10.1016/j.ijantimicag.2010.02.019

    Article  CAS  PubMed  Google Scholar 

  118. Tsuji Y, Hiraki Y, Matsumoto K et al (2011) Thrombocytopenia and anemia caused by a persistent high linezolid concentration in patients with renal dysfunction. J Infect Chemother 17:70–75. doi:10.1007/s10156-010-0080-6

    Article  CAS  PubMed  Google Scholar 

  119. Tsuji Y, Yukawa E, Hiraki Y et al (2013) Population pharmacokinetic analysis of linezolid in low body weight patients with renal dysfunction. J Clin Pharmacol 53:967–973. doi:10.1002/jcph.133

    Article  CAS  PubMed  Google Scholar 

  120. Zoller M, Maier B, Hornuss C et al (2014) Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care 18:R148. doi:10.1186/cc13984

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pea F, Furlanut M, Cojutti P et al (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54:4605–4610. doi:10.1128/AAC.00177-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Abe S, Chiba K, Cirincione B et al (2009) Population pharmacokinetic analysis of linezolid in patients with infectious disease: application to lower body weight and elderly patients. J Clin Pharmacol 49:1071–1078. doi:10.1177/0091270009337947

    Article  CAS  PubMed  Google Scholar 

  123. Nukui Y, Hatakeyama S, Okamoto K et al (2013) High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother 68:2128–2133. doi:10.1093/jac/dkt133

    Article  CAS  PubMed  Google Scholar 

  124. Pea F, Viale P, Cojutti P et al (2012) Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 67:2034–2042. doi:10.1093/jac/dks153

    Article  CAS  PubMed  Google Scholar 

  125. Bhalodi AA, Papasavas PK, Tishler DS et al (2013) Pharmacokinetics of intravenous linezolid in moderately to morbidly obese adults. Antimicrob Agents Chemother 57:1144–1149. doi:10.1128/AAC.01453-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hamilton R, Thai XC, Ameri D, Pai MP (2013) Oral bioavailability of linezolid before and after Roux-en-Y gastric bypass surgery: is dose modification necessary in obese subjects? J Antimicrob Chemother 68:666–673. doi:10.1093/jac/dks431

    Article  CAS  PubMed  Google Scholar 

  127. Cojutti P, Maximova N, Crichiutti G et al (2015) Pharmacokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation. J Antimicrob Chemother 70:198–206. doi:10.1093/jac/dku337

    Article  CAS  PubMed  Google Scholar 

  128. Matsumoto K, Shigemi A, Takeshita A et al (2014) Analysis of thrombocytopenic effects and population pharmacokinetics of linezolid: a dosage strategy according to the trough concentration target and renal function in adult patients. Int J Antimicrob Agents 44:242–247. doi:10.1016/j.ijantimicag.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  129. Boak LM, Rayner CR, Grayson ML et al (2014) Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob Agents Chemother 58:2334–2343. doi:10.1128/AAC.01885-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Cattaneo D, Orlando G, Cozzi V et al (2013) Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents 41:586–589. doi:10.1016/j.ijantimicag.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  131. Hiraki Y, Tsuji Y, Hiraike M et al (2012) Correlation between serum linezolid concentration and the development of thrombocytopenia. Scand J Infect Dis 44:60–64. doi:10.3109/00365548.2011.608712

    Article  CAS  PubMed  Google Scholar 

  132. Cattaneo D, Gervasoni C, Clementi E (2016) Is there still room for therapeutic drug monitoring of linezolid in patients with tuberculosis? Eur Respir J 47:1287–1288. doi:10.1183/13993003.01913-2015

    Article  CAS  PubMed  Google Scholar 

  133. De Pascale G, Fortuna S, Tumbarello M et al (2015) Linezolid plasma and intrapulmonary concentrations in critically ill obese patients with ventilator-associated pneumonia: intermittent vs continuous administration. Intensive Care Med 41:103–110. doi:10.1007/s00134-014-3550-y

    Article  PubMed  CAS  Google Scholar 

  134. Dong H, Xie J, Chen L et al (2014) Developments in the pharmacokinetic/pharmacodynamic index of linezolid: a step toward dose optimization using Monte Carlo simulation in critically ill patients. Int J Infect Dis 22:35–40. doi:10.1016/j.ijid.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  135. Alffenaar J-WC, Kosterink JGW, van Altena R et al (2010) Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit 32:97–101. doi:10.1097/FTD.0b013e3181cc6d6f

    Article  CAS  PubMed  Google Scholar 

  136. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. doi:10.1086/429323

    Article  CAS  PubMed  Google Scholar 

  137. Zavascki AP (2014) Polymyxins for the treatment of extensively-drug-resistant Gram-negative bacteria: from pharmacokinetics to bedside. Expert Rev Anti Infect Ther 12:531–533. doi:10.1586/14787210.2014.902307

    Article  CAS  PubMed  Google Scholar 

  138. Nation RL, Li J, Cars O et al (2015) Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis 15:225–234. doi:10.1016/S1473-3099(14)70850-3

    Article  CAS  PubMed  Google Scholar 

  139. Garonzik SM, Li J, Thamlikitkul V et al (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55:3284–3294. doi:10.1128/AAC.01733-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Plachouras D, Karvanen M, Friberg LE et al (2009) Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 53:3430–3436. doi:10.1128/AAC.01361-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sorlí L, Luque S, Campillo N, et al (2016) Impact of colistin therapeutic drug monitoring in a clinical setting. Amsterdam, Netherlands

    Google Scholar 

  142. Bode-Böger SM, Schopp B, Tröger U et al (2013) Intravenous colistin in a patient with serious burns and borderline syndrome: the benefits of therapeutic drug monitoring. Int J Antimicrob Agents 42:357–360. doi:10.1016/j.ijantimicag.2013.06.009

    Article  PubMed  CAS  Google Scholar 

  143. Yaita K, Sameshima I, Takeyama H et al (2013) Liver abscess caused by multidrug-resistant Pseudomonas aeruginosa treated with colistin; a case report and review of the literature. Intern Med Tokyo Jpn 52:1407–1412

    Article  Google Scholar 

  144. Yamada T, Ishiguro N, Oku K et al (2015) Successful colistin treatment of multidrug-resistant Pseudomonas aeruginosa infection using a rapid method for determination of colistin in plasma: usefulness of therapeutic drug monitoring. Biol Pharm Bull 38:1430–1433. doi:10.1248/bpb.b15-00323

    Article  CAS  PubMed  Google Scholar 

  145. Karaiskos I, Friberg LE, Pontikis K et al (2015) Colistin population pharmacokinetics after application of a loading dose of 9 MU colistin methanesulfonate in critically ill patients. Antimicrob Agents Chemother 59:7240–7248. doi:10.1128/AAC.00554-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mohamed AF, Karaiskos I, Plachouras D et al (2012) Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 56:4241–4249. doi:10.1128/AAC.06426-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nation RL, Garonzik SM, Li J et al (2016) Updated US and European dose recommendations for intravenous colistin: how do they perform? Clin Infect Dis 62:552–558. doi:10.1093/cid/civ964

    Article  PubMed  Google Scholar 

  148. Sorlí L, Luque S, Grau S et al (2013) Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis 13:380. doi:10.1186/1471-2334-13-380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Horcajada JP, Sorlí L, Luque S et al (2016) Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int J Antimicrob Agents 48:725–727. doi:10.1016/j.ijantimicag.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  150. Landersdorfer CB, Nation RL (2015) Colistin: how should it be dosed for the critically ill? Semin Respir Crit Care Med 36:126–135. doi:10.1055/s-0034-1398390

    Article  PubMed  Google Scholar 

  151. Moise PA, North D, Steenbergen JN, Sakoulas G (2009) Susceptibility relationship between vancomycin and daptomycin in Staphylococcus aureus: facts and assumptions. Lancet Infect Dis 9:617–624. doi:10.1016/S1473-3099(09)70200-2

    Article  CAS  PubMed  Google Scholar 

  152. Rose WE, Leonard SN, Sakoulas G et al (2008) daptomycin activity against Staphylococcus aureus following vancomycin exposure in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 52:831–836. doi:10.1128/AAC.00869-07

    Article  CAS  PubMed  Google Scholar 

  153. Safdar N, Andes D, Craig WA (2004) In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 48:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Falcone M, Russo A, Cassetta MI et al (2013) Variability of pharmacokinetic parameters in patients receiving different dosages of daptomycin: is therapeutic drug monitoring necessary? J Infect Chemother 19:732–739. doi:10.1007/s10156-013-0559-z

    Article  CAS  PubMed  Google Scholar 

  155. Firsov AA, Smirnova MV, Lubenko IY et al (2006) Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother 58:1185–1192. doi:10.1093/jac/dkl387

    Article  CAS  PubMed  Google Scholar 

  156. Chambers HF, Basuino L, Diep BA et al (2009) Relationship between susceptibility to daptomycin in vitro and activity in vivo in a rabbit model of aortic valve endocarditis. Antimicrob Agents Chemother 53:1463–1467. doi:10.1128/AAC.01307-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Reiber C, Senn O, Müller D et al (2015) Therapeutic drug monitoring of daptomycin: a retrospective monocentric analysis. Ther Drug Monit 37:634–640. doi:10.1097/FTD.0000000000000196

    Article  CAS  PubMed  Google Scholar 

  158. D’Avolio A, Pensi D, Baietto L et al (2016) Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs 76:1161–1174. doi:10.1007/s40265-016-0610-3

    Article  PubMed  CAS  Google Scholar 

  159. Falcone M, Russo A, Cassetta MI et al (2012) Daptomycin serum levels in critical patients undergoing continuous renal replacement. J Chemother 24:253–256. doi:10.1179/1973947812Y.0000000033

    Article  CAS  PubMed  Google Scholar 

  160. Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL (2010) Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis 50:1568–1574. doi:10.1086/652767

    Article  CAS  PubMed  Google Scholar 

  161. Barreau S, Benaboud S, Kernéis S et al (2016) Staphylococcus aureus osteo-articular infection: usefulness of the determination of daptomycin serum concentration to explain a treatment failure. Int J Clin Pharmacol Ther 54:923–927. doi:10.5414/CP202538

    Article  PubMed  Google Scholar 

  162. Cohen-Wolkowiez M, Smith PB, Benjamin DK et al (2008) Daptomycin use in infants: report of two cases with peak and trough drug concentrations. J Perinatol Off J Calif Perinat Assoc 28:233–234. doi:10.1038/sj.jp.7211898

    Article  CAS  Google Scholar 

  163. Soto D, Silva C, Andresen VM et al (2015) Monitorización terapéutica de antibióticos: Nuevas metodologías: biosensores. Rev Médica Chile 143:1050–1057. doi:10.4067/S0034-98872015000800013

    Article  Google Scholar 

  164. Ferguson BS, Hoggarth DA, Maliniak D et al (2013) Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 5:213ra165. doi:10.1126/scitranslmed.3007095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Tsalik EL, Henao R, Nichols M et al (2016) Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 8:322ra11. doi:10.1126/scitranslmed.aad6873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Webster M, Kumar VS (2016) A blood scan for sepsis? Clin Chem 62:538–540. doi:10.1373/clinchem.2015.253682

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Stojanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Stojanova, J., Luque, S. (2018). Therapeutic Drug Monitoring: More Than Avoiding Toxicity. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_9

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics