Skip to main content

Effect of Newtonian Heating/Cooling on Hydromagnetic Free Convection in Alternate Conducting Vertical Concentric Annuli

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper presents the effects of the Newtonian heating/cooling and the radial magnetic field on steady hydromagnetic free convective flow of a viscous and electrically conducting fluid between vertical concentric cylinders by neglecting compressibility effect. The derived governing equations of the model are first recast into the non-dimensional simultaneous ordinary differential equations using the suitable non-dimensional variables and parameters. By obtaining the exact solution of the simultaneous ordinary differential equations, the effects of the Hartmann number as well as the Biot number on the velocity, induced magnetic field, induced current density, Nusselt number, skin-friction and mass flux of the fluid are presented by the graphs and tables. The effect of the Biot number is to increase the velocity, induced magnetic field and induced current density in the case of the Newtonian heating and vice versa in the case of the Newtonian cooling, but the effect of Hartmann number is to decrease all above fields. Further, graphical representation shows that the velocity and induced magnetic field are rapidly decreasing, with increasing the Hartmann number, when one of the cylinders is conducting compared with when both the cylinders are non-conducting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora KL, Gupta RP (1971) Magnetohydrodynamic flow between two rotating coaxial cylinders under radial magnetic field. Phys Fluid 15:1146–1148

    Article  MATH  Google Scholar 

  • El-Shaarawi MAI, Sarhan A (1981) Developing laminar free-convection in an open ended vertical annulus with rotating inner cylinder. ASME J Heat Transf 103:552–558

    Article  Google Scholar 

  • Fadzilah MA, Nazar R, Arifin M, Pop I (2011) MHD boundary-layer flow and heat transfer over a stretching sheet with induced magnetic field. J Heat Mass Transf 47:155–162

    Article  Google Scholar 

  • Globe S (1959) Laminar steady state magnetohydrodynamic flow in an annular channel. Phys Fluid 2:404–407

    Article  MATH  MathSciNet  Google Scholar 

  • Hussanan A, Khan I, Shafie S (2013) An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. J Appl Math 2013:1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Joshi HM (1987) Fully developed natural convection in an isothermal vertical annular duct. Int Commun Heat Mass Transf 14:657–664

    Article  Google Scholar 

  • Kumar A, Singh AK (2013) Effect of induced magnetic field on natural convection in vertical concentric annuli heated/cooled asymmetrically. J Appl Fluid Mech 6:15–26

    Google Scholar 

  • Kumar D, Singh AK (2015) Effect of induced magnetic field on natural convection with Newtonian heating/cooling in vertical concentric annuli. Procedia Eng 127:568–574

    Article  Google Scholar 

  • Kumar D, Singh AK (2016) Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli. Alexandria Eng J 55:3125–3133

    Article  Google Scholar 

  • Merkin JH (1994) Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15:392–398

    Article  Google Scholar 

  • Ramamoorthy P (1961) Flow between two concentric rotating cylinders with a radial magnetic field. Phys Fluid 4:1444–1445

    Article  MATH  MathSciNet  Google Scholar 

  • Seong JK, Choung ML (2001) Control of flows around a circular cylinder suppression of oscillatory lift force. Fluid Dyn Res 29:47–63

    Article  Google Scholar 

  • Singh RK, Singh AK (2012) Effect of induced magnetic field on natural convection in vertical concentric annuli. Acta Mech Sin 28:315–323

    Article  MATH  MathSciNet  Google Scholar 

  • Singh SK, Jha BK, Singh AK (1997) Natural convection in vertical concentric annuli under a radial magnetic field. Heat Mass Transf 32:399–401

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Dileep Kumar is grateful to the University Grants Commission, New Delhi, for financial assistance in the form of a Fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{array}{*{20}l} {{A}_{10} = \left\{ {\frac{{({1} + {R})}}{{({Bi}\,{\log}\,{\lambda } + {1})}}} \right\}{,} {A}_{11} = \left\{ {{A}_{10} {B}_{16} + {B}_{17} } \right\}{,} {A}_{21} = {A}_{31} = \left\{ {{A}_{10} {B}_{24} + {B}_{25} } \right\},} \hfill \\ {{A}_{12} = \left\{ {{A}_{10} {B}_{18} + {B}_{19} } \right\}, {A}_{23} = {A}_{33} = {0,} {A}_{22} = {A}_{32} = \left\{ {{A}_{10} {B}_{26} + {B}_{27} } \right\},} \hfill \\ {{A}_{13} = - \left\{ {{A}_{11} + {A}_{12} + {A}_{10} {B}_{12} + {B}_{13} {R}} \right\}, {B}_{11} = {B}_{21} = {B}_{31} = - \left\{ {\frac{Bi}{{({4} - {Ha}^{2} )}}} \right\},} \hfill \\ {{A}_{14} = \left\{ {\frac{1}{Ha}({A}_{11} - {A}_{12} ) - \frac{{{A}_{10} }}{4}({B}_{11} - {2B}_{12} ) + \frac{R}{2}{B}_{13} } \right\}{,B}_{16} = \left\{ {\frac{{({B}_{14} + {B}_{15} )}}{{{2(1} - {\lambda }^{Ha} {)}}}} \right\},} \hfill \\ {{A}_{24} = \left\{ {\frac{1}{Ha}({A}_{21} - {A}_{22} ) - \frac{{{A}_{10} }}{4}({B}_{11} - {2B}_{12} ) + \frac{R}{2}{B}_{13} } \right\},{D}_{27} = \left\{ {\frac{{{R}{\lambda }^{2} {\log}\,{\lambda }}}{{{4 (\lambda }^{{ - {2}}} - {\lambda }^{2} {)}}}} \right\},} \hfill \\ {{A}_{34} = \left[ {\frac{1}{Ha}({A}_{31} {\lambda }^{Ha} - {A}_{32} {\lambda }^{{ - {Ha}}} ) - \frac{{{A}_{10} {\lambda }^{2} }}{4}\left\{ {{B}_{11} ({1} - {2\log}\,{\lambda }) - {2B}_{12} } \right\} + {B}_{38} {R}{\lambda }^{2} } \right]{,}} \hfill \\ {{B}_{12} = {B}_{22} = {B}_{32} = \left\{ {\frac{4Bi}{{({4} - {Ha}^{2} )^{2} }} - \frac{1}{{({4} - {Ha}^{2} )}}} \right\},{B}_{13} = {B}_{23} = {B}_{33} = \left\{ {\frac{1}{{({4} - {Ha}^{2} )}}} \right\},} \hfill \\ {{B}_{14} = \left\{ {{B}_{11} {\lambda }^{2} {\log}\,{\lambda } + {B}_{12} ({\lambda }^{2} - {1})} \right\},{B}_{24} = {B}_{34} = \left\{ {\frac{{{B}_{11} {\lambda }^{2} {\log \lambda } + {B}_{12} ({\lambda }^{2} - {\lambda }^{{ - {Ha}}} )}}{{({\lambda }^{{ - {Ha}}} - {\lambda }^{Ha} )}}} \right\},} \hfill \\ {{B}_{15} = \frac{M}{4}\left\{ {({2B}_{12} - {B}_{11} )({\lambda }^{2} - {1}) + {2B}_{11} {\lambda }^{2} {\log}\,{\lambda }} \right\},{B}_{25} = {B}_{35} = \left\{ {\frac{{{B}_{13} {R(}{\lambda }^{2} - {\lambda }^{{ - {Ha}}} {)}}}{{({\lambda }^{{ - {Ha}}} - {\lambda }^{Ha} )}}} \right\},} \hfill \\ {{B}_{26} = {B}_{36} = \left\{ {\frac{{{B}_{11} {\lambda }^{2} {\log}\,{\lambda } + {B}_{12} ({\lambda }^{2} - {\lambda }^{Ha} )}}{{({\lambda }^{Ha} - {\lambda }^{{ - {Ha}}} )}}} \right\},{B}_{17} = \left\{ {\frac{{{B}_{13} {R(}{\lambda }^{2} - {1)}\left( {{1} + \frac{Ha}{2}} \right)}}{{{2(1} - {\lambda }^{Ha} {)}}}} \right\},} \hfill \\ {{B}_{27} = {B}_{37} = \left\{ {\frac{{{B}_{13} {R(}{\lambda }^{2} - {\lambda }^{Ha} {)}}}{{({\lambda }^{Ha} - {\lambda }^{{ - {Ha}}} )}}} \right\},{B}_{18} = \left\{ {\frac{{({B}_{14} - {B}_{15} )}}{{{2(1} - {\lambda }^{{ - {Ha}}} {)}}}} \right\},{B}_{38} = \left( {\frac{{{B}_{13} }}{2}} \right),} \hfill \\ {{B}_{19} = \left\{ {\frac{{{B}_{13} {R(}{\lambda }^{2} - {1)}\left( {{1} - \frac{Ha}{2}} \right)}}{{{2(1} - {\lambda }^{{ - {Ha}}} {)}}}} \right\},{C}_{11} = \left\{ {\frac{{{A}_{10} {D}_{17} }}{{{2(1} - {\lambda }^{2} {)}}} + \frac{{{R(1} - {\lambda }^{2} + {4}{\lambda }^{2} {\log}\,{\lambda }{)}}}{{{16(1} - {\lambda }^{2} {)}}}} \right\}{,}} \hfill \\ \end{array}$$
$$\begin{array}{*{20}l} {{C}_{12} = \left\{ {\frac{{{A}_{10} {D}_{16} }}{{{2(1} - {\lambda }^{{ - {2}}} {)}}} + \frac{{{R(}{\lambda }^{2} - {1)}}}{{{16(1} - {\lambda }^{{ - {2}}} {)}}}} \right\},{C}_{21} = ({A}_{10} {D}_{26} + {D}_{27} ){,C}_{13} = - ({C}_{11} + {C}_{12} ),} \hfill \\ {{C}_{14} = {C}_{24} = \left\{ {\frac{1}{2}({C}_{11} - {C}_{12} ) + {A}_{10} {D}_{15} - \frac{R}{16}} \right\}{,C}_{22} = ({A}_{10} {D}_{28} + {D}_{29} ){,}} \hfill \\ {{C}_{23} = {C}_{33} = {0,C}_{31} = ({A}_{10} {D}_{36} + {D}_{37} ){,C}_{32} = ({A}_{10} {D}_{38} + {D}_{39} ){,}} \hfill \\ {{C}_{34} = \left[ {\frac{1}{2}({C}_{11} {\lambda }^{2} - {C}_{12} {\lambda }^{{ - {2}}} ) + {A}_{10} {\lambda }^{2} \left\{ {{(D}_{33} {\log}\,{\lambda } + {D}_{34} {)\log}\,{\lambda } + {D}_{35} } \right\} - \frac{R}{16}{\lambda }^{2} ({1} - {\log}\,{\lambda })} \right]{,}} \hfill \\ {{D}_{11} = {D}_{21} = {D}_{31} = - \left( {\frac{Bi}{8}} \right),{D}_{29} = \left\{ {\frac{{{R}{\lambda }^{2} {\log}\,{\lambda }}}{{{4(}{\lambda }^{2} - {\lambda }^{{ - {2}}} {)}}}} \right\},{D}_{12} = {D}_{22} = {D}_{32} = \left( {\frac{Bi}{16} - \frac{1}{4}} \right),} \hfill \\ {{D}_{13} = {D}_{23} = {D}_{33} = \left( {\frac{{{D}_{11} }}{2}} \right),{D}_{14} = {D}_{24} = {D}_{34} = \left\{ {\frac{{({D}_{12} - {D}_{11} )}}{2}} \right\},} \hfill \\ {{D}_{15} = {D}_{25} = {D}_{35} = \left\{ {\frac{{({D}_{11} - {D}_{12} )}}{4}} \right\},{D}_{28} = \left\{ {\frac{{{\lambda }^{2} {\log}\,{\lambda }{(D}_{21} {\log}\,{\lambda } + {D}_{22} {)}}}{{({\lambda }^{2} - {\lambda }^{{ - {2}}} )}}} \right\}{,}} \hfill \\ {{D}_{16} = \left\{ {{D}_{11} {\lambda }^{2} ({\log}\,{\lambda })^{2} + {D}_{12} {\lambda }^{2} {\log}\,{\lambda } - {2}{\lambda }^{2} {\log}\,{\lambda }{(D}_{13} {\log}\,{\lambda } + {D}_{14} {)} - {2D}_{15} ({\lambda }^{2} - {1})} \right\},} \hfill \\ {{D}_{17} = \left\{ {{D}_{11} {\lambda }^{2} ({\log}\,{\lambda })^{2} + {D}_{12} {\lambda }^{2} {\log}\,{\lambda } + {2}{\lambda }^{2} {\log}\,{\lambda }{(D}_{13} {\log}\,{\lambda } + {D}_{14} {)} + {2D}_{15} ({\lambda }^{2} - {1})} \right\},} \hfill \\ {{D}_{26} = \left\{ {\frac{{{\lambda }^{2} {\log}\,{\lambda }{(D}_{21} {\log}\,{\lambda } + {D}_{22} {)}}}{{({\lambda }^{{ - {2}}} - {\lambda }^{2} )}}} \right\}{,D}_{36} = \left\{ {\frac{{{\lambda }^{2} {\log}\,{\lambda }}}{{({\lambda }^{{ - {2}}} - {\lambda }^{2} )}}({D}_{31} {\log}\,{\lambda } + {D}_{32} )} \right\},} \hfill \\ {{D}_{37} = \left\{ {\frac{{{R}{\lambda }^{2} {\log}\,{\lambda }}}{{{4(}{\lambda }^{{ - {2}}} - {\lambda }^{2} {)}}}} \right\},{D}_{38} = \left\{ {\frac{{{\lambda }^{2} {\log}\,{\lambda }}}{{({\lambda }^{2} - {\lambda }^{{ - {2}}} )}}({D}_{31} {\log}\,{\lambda } + {D}_{32} )} \right\}{,D}_{39} = \left\{ {\frac{{{R}{\lambda }^{2} {\log}\,{\lambda }}}{{{4(}{\lambda }^{2} - {\lambda }^{{ - {2}}} {)}}}} \right\}.} \hfill \\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, D., Singh, A.K. (2018). Effect of Newtonian Heating/Cooling on Hydromagnetic Free Convection in Alternate Conducting Vertical Concentric Annuli. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics