Skip to main content

Endophthalmitis Caused by Gram-Negative Bacteria

  • Chapter
  • First Online:
Endophthalmitis

Abstract

Endophthalmitis caused by gram-negative bacteria is less common compared to gram-positive bacteria and generally has poor visual acuity outcomes. More common gram-negative bacteria causing endophthalmitis include species of Pseudomonas, Klebsiella, Proteus, Haemophilus, and Enterobacter. Pseudomonas and Enterobacter are reportedly more common. Gram-negative endophthalmitis may present with symptoms of variable pain, redness, inflammation, and decreased visual acuity. The clinical signs include eyelid edema, conjunctival chemosis/erythema, corneal edema, hypopyon, fibrinous membrane in the anterior chamber or on intraocular lens, vitritis, and periphlebitis (Fig. 17.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han DP, Wisniewski SR, Wilson LA, et al. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol. 1996;122(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  2. Kamalarajah S, Silvestri G, Sharma N, et al. Surveillance of endophthalmitis following cataract surgery in the UK. Eye (Lond). 2004;18(6):580–7.

    Article  CAS  Google Scholar 

  3. Altan T, Acar N, Kapran Z, et al. Acute-onset endophthalmitis after cataract surgery: success of initial therapy, visual outcomes, and related factors. Retina. 2009;29(5):606–12.

    Article  PubMed  Google Scholar 

  4. Jindal A, Pathengay A, Khera M, et al. Combined ceftazidime and amikacin resistance among Gram-negative isolates in acute-onset postoperative endophthalmitis: prevalence, antimicrobial susceptibilities, and visual acuity outcome. J Ophthalmic Inflamm Infect. 2013;3(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wilhelmus KR. The pathogenesis of endophthalmitis. Int Ophthalmol Clin. 1987;27(2):74–81.

    Article  CAS  PubMed  Google Scholar 

  6. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213–8.

    Article  PubMed  Google Scholar 

  7. Puliafito CA, Baker AS, Haaf J, Foster CS. Infectious endophthalmitis. Review of 36 cases. Ophthalmology. 1982;89(8):921–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kattan HM, Flynn HW Jr, Pflugfelder SC, et al. Nosocomial endophthalmitis survey. Current incidence of infection after intraocular surgery. Ophthalmology. 1991;98(2):227–38.

    Article  CAS  PubMed  Google Scholar 

  9. Leng T, Flynn HW Jr, Miller D, et al. Endophthalmitis caused by proteus species: antibiotic sensitivities and visual acuity outcomes. Retina. 2009;29(7):1019–24.

    Article  PubMed  Google Scholar 

  10. Sheu SJ, Kung YH, Wu TT, et al. Risk factors for endogenous endophthalmitis secondary to klebsiella pneumoniae liver abscess: 20-year experience in Southern Taiwan. Retina. 2011;31(10):2026–31.

    Article  PubMed  Google Scholar 

  11. Sng CC, Jap A, Chan YH, Chee SP. Risk factors for endogenous Klebsiella endophthalmitis in patients with Klebsiella bacteraemia: a case-control study. Br J Ophthalmol. 2008;92(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lin JC, Chang FY, Fung CP, et al. Do neutrophils play a role in establishing liver abscesses and distant metastases caused by Klebsiella pneumoniae? PLoS One. 2010;5(11):e15005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott IU, Matharoo N, Flynn HW Jr, Miller D. Endophthalmitis caused by Klebsiella species. Am J Ophthalmol. 2004;138(4):662–3.

    Article  PubMed  Google Scholar 

  14. Kashani AH, Eliott D. The emergence of Klebsiella pneumoniae endogenous endophthalmitis in the USA: basic and clinical advances. J Ophthalmic Inflamm Infect. 2013;3(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kashani AH, Eliott D. Bilateral Klebsiella pneumoniae (K1 serotype) endogenous endophthalmitis as the presenting sign of disseminated infection. Ophthalmic Surg Lasers Imaging. 2011;42:e12–4.

    Article  PubMed  Google Scholar 

  16. Chen X, Adelman RA. Microbial spectrum and resistance patterns in endophthalmitis: a 21-year (1988-2008) review in northeast United States. J Ocul Pharmacol Ther. 2012;28(4):329–34.

    Article  CAS  PubMed  Google Scholar 

  17. Okada AA, Johnson RP, Liles WC, et al. Endogenous bacterial endophthalmitis. Report of a ten-year retrospective study. Ophthalmology. 1994;101(5):832–8.

    Article  CAS  PubMed  Google Scholar 

  18. Schiedler V, Scott IU, Flynn HW Jr, et al. Culture-proven endogenous endophthalmitis: clinical features and visual acuity outcomes. Am J Ophthalmol. 2004;137(4):725–31.

    PubMed  Google Scholar 

  19. Sridhar J, Flynn HW Jr, Kuriyan AE, et al. Endophthalmitis caused by Klebsiella species. Retina. 2014;34(9):1875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanghi S, Pathengay A, Jindal A, et al. Acute-onset postoperative endophthalmitis caused by multidrug-resistant Klebsiella pneumoniae. Clin Ophthalmol. 2014;8:1783–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mandell WF, Garvey GJ, Neu HC. Achromobacter xylosoxidans bacteremia. Rev Infect Dis. 1987;9(5):1001–5.

    Article  CAS  PubMed  Google Scholar 

  22. Spear JB, Fuhrer J, Kirby BD. Achromobacter xylosoxidans (Alcaligenes xylosoxidans subsp. xylosoxidans) bacteremia associated with a well-water source: case report and review of the literature. J Clin Microbiol. 1988;26(3):598–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reddy AK, Garg P, Shah V, Gopinathan U. Clinical, microbiological profile and treatment outcome of ocular infections caused by Achromobacter xylosoxidans. Cornea. 2009;28(10):1100–3.

    Article  PubMed  Google Scholar 

  25. Villegas VM, Emanuelli A, Flynn HW Jr, et al. Endophthalmitis caused by Achromobacter xylosoxidans after cataract surgery. Retina. 2014;34(3):583–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sridhar J, Kuriyan AE, Flynn HW Jr, et al. Endophthalmitis caused by Serratia marcescens: clinical features, antibiotic susceptibilities, and treatment outcomes. Retina. 2015;35(6):1095–100.

    Article  CAS  PubMed  Google Scholar 

  27. Aaberg TM Jr, Flynn HW Jr, Schiffman J, Newton J. Nosocomial acute-onset postoperative endophthalmitis survey. A 10-year review of incidence and outcomes. Ophthalmology. 1998;105(6):1004–10.

    Article  PubMed  Google Scholar 

  28. Cheng JH, Chang YH, Chen CL, et al. Acute endophthalmitis after cataract surgery at a referral centre in Northern Taiwan: review of the causative organisms, antibiotic susceptibility, and clinical features. Eye (Lond). 2010;24(8):1359–65.

    Article  Google Scholar 

  29. Zaluski S, Clayman HM, Karsenti G, et al. Pseudomonas aeruginosa endophthalmitis caused by contamination of the internal fluid pathways of a phacoemulsifier. J Cataract Refract Surg. 1999;25(4):540–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ramappa M, Majji AB, Murthy SI, et al. An outbreak of acute post-cataract surgery Pseudomonas sp. endophthalmitis caused by contaminated hydrophilic intraocular lens solution. Ophthalmology. 2012;119(3):564–70.

    Article  PubMed  Google Scholar 

  31. Swaddiwudhipong W, Tangkitchot T, Silarug N. An outbreak of Pseudomonas aeruginosa postoperative endophthalmitis caused by contaminated intraocular irrigating solution. Trans R Soc Trop Med Hyg. 1995;89(3):288.

    Article  CAS  PubMed  Google Scholar 

  32. Mateos I, Valencia R, Torres MJ, et al. Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis. Infect Control Hosp Epidemiol. 2006;27(11):1249–51.

    Article  CAS  PubMed  Google Scholar 

  33. Maltezou HC, Pappa O, Nikolopoulos G, et al. Postcataract surgery endophthalmitis outbreak caused by multidrug-resistant Pseudomonas aeruginosa. Am J Infect Control. 2012;40(1):75–7.

    Article  PubMed  Google Scholar 

  34. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006;119(6 Suppl 1):S3–10. discussion S62–70.

    Article  CAS  PubMed  Google Scholar 

  35. Sridhar J, Kuriyan AE, Flynn HW Jr, Miller D. Endophthalmitis caused by Pseudomonas aeruginosa: clinical features, antibiotic susceptibilities, and treatment outcomes. Retina. 2015;35(6):1101–6.

    Article  PubMed  Google Scholar 

  36. Irvine WD, Flynn HW Jr, Miller D, Pflugfelder SC. Endophthalmitis caused by gram-negative organisms. Arch Ophthalmol. 1992;110(10):1450–4.

    Article  CAS  PubMed  Google Scholar 

  37. Recchia FM, Baumal CR, Sivalingam A, et al. Endophthalmitis after pediatric strabismus surgery. Arch Ophthalmol. 2000;118(7):939–44.

    CAS  PubMed  Google Scholar 

  38. Scott IU, Flynn HW Jr, Feuer W, et al. Endophthalmitis associated with microbial keratitis. Ophthalmology. 1996;103(11):1864–70.

    Article  CAS  PubMed  Google Scholar 

  39. Yoder DM, Scott IU, Flynn HW Jr, Miller D. Endophthalmitis caused by Haemophilus influenzae. Ophthalmology. 2004;111(11):2023–6.

    Article  PubMed  Google Scholar 

  40. Kunimoto DY, Das T, Sharma S, et al. Microbiologic spectrum and susceptibility of isolates: part I. Postoperative endophthalmitis. Endophthalmitis Research Group. Am J Ophthalmol. 1999;128(2):240–2.

    Article  CAS  PubMed  Google Scholar 

  41. Asbell PA, Sanfilippo CM, Pillar CM, et al. Antibiotic resistance among ocular pathogens in the United States: five-year results from the antibiotic resistance monitoring in ocular microorganisms (ARMOR) surveillance study. JAMA Ophthalmol. 2015;133(12):1445–54.

    Article  PubMed  Google Scholar 

  42. Pathengay A, Moreker MR, Puthussery R, et al. Clinical and microbiologic review of culture-proven endophthalmitis caused by multidrug-resistant bacteria in patients seen at a tertiary eye care center in southern India. Retina. 2011;31(9):1806–11.

    Article  PubMed  Google Scholar 

  43. Gad GF, Mohamed HA, Ashour HM. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in upper Egypt. PLoS One. 2011;6(2):e17224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133–48.

    Article  CAS  PubMed  Google Scholar 

  45. Miller D. Microbiologic diagnosis in endophthalmitis. In: Durand LM, Miller WJ, Young HL, editors. Endophthalmitis. Cham: Springer International Publishing; 2016.

    Google Scholar 

  46. Radhika M, Mithal K, Bawdekar A, et al. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J Ophthalmic Inflamm Infect. 2014;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gilbert DN, Chambers HF, Eliopoulos GM, Saag MS. The Sanford guide to antimicrobial therapy. 46th ed. Sperryville, VA: Antimicrobial Therapy Inc.; 2016.

    Google Scholar 

  48. Rooney P, Bilbe G, Zak O, O’Reilly T. Dexamethasone treatment of lipopolysaccharide-induced meningitis in rabbits that mimics magnification of inflammation following antibiotic therapy. J Med Microbiol. 1995;43(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  49. Townsend GC, Scheld WM. The use of corticosteroids in the management of bacterial meningitis in adults. J Antimicrob Chemother. 1996;37(6):1051–61.

    Article  CAS  PubMed  Google Scholar 

  50. Maxwell DP Jr, Brent BD, Diamond JG, Wu L. Effect of intravitreal dexamethasone on ocular histopathology in a rabbit model of endophthalmitis. Ophthalmology. 1991;98(9):1370–5.

    Article  PubMed  Google Scholar 

  51. Park SS, Samiy N, Ruoff K, et al. Effect of intravitreal dexamethasone in treatment of pneumococcal endophthalmitis in rabbits. Arch Ophthalmol. 1995;113(10):1324–9.

    Article  CAS  PubMed  Google Scholar 

  52. Smith MA, Sorenson JA, D’Aversa G, et al. Treatment of experimental methicillin-resistant Staphylococcus epidermidis endophthalmitis with intravitreal vancomycin and intravitreal dexamethasone. J Infect Dis. 1997;175(2):462–6.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshizumi MO, Lee GC, Equi RA, et al. Timing of dexamethasone treatment in experimental Staphylococcus aureus endophthalmitis. Retina. 1998;18(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  54. Das T, Jalali S, Gothwal VK, et al. Intravitreal dexamethasone in exogenous bacterial endophthalmitis: results of a prospective randomised study. Br J Ophthalmol. 1999;83(9):1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah GK, Stein JD, Sharma S, et al. Visual outcomes following the use of intravitreal steroids in the treatment of postoperative endophthalmitis. Ophthalmology. 2000;107(3):486–9.

    Article  CAS  PubMed  Google Scholar 

  56. Meredith TA, Aguilar HE, Drews C, et al. Intraocular dexamethasone produces a harmful effect on treatment of experimental Staphylococcus aureus endophthalmitis. Trans Am Ophthalmol Soc. 1996;94:241–52. discussion 52–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Callegan MC, Engelbert M, Parke DW II, et al. Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium-host interactions. Clin Microbiol Rev. 2002;15(1):111–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We acknowledge support from NIH Center Core Grant P30EY014801 (Bethesda, Maryland), Research to Prevent Blindness Unrestricted Grant (New York, New York), and the Department of Defense (DOD Grant #W81XWH-09-1-0675) (Washington, DC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry W. Flynn Jr. M.D. .

Editor information

Editors and Affiliations

Frequently Asked Questions

Frequently Asked Questions

  1. 1.

    What are the clinical signs that differentiate from a gram-positive cocci endophthalmitis before culture results are available?

    A: There are no known clinical signs that differentiate between endophthalmitis caused by gram-positive bacteria versus gram-negative bacteria.

    Suggested read—refer to section—Introduction for clinical presentation.

  2. 2.

    Considering a restively poor outcome, should all gram-negative endophthalmitis receive a repeat intravitreal injection?

    A: Repeat intravitreal injection should be considered on the basis of the initial response to intravitreal antibiotic and topical treatment. In cases with favorable response, topical treatment can be continued. However, in cases with worsening of features, repeat intravitreal injection or pars plana vitrectomy may be considered keeping in mind the antibiotic susceptibility results.

  3. 3.

    Does intravitreal steroid play a crucial role in gram-negative endophthalmitis?

    A: Ocular inflammatory response although important for the clearance of organisms during infection can induce damage to sensitive neurologic tissues. The ocular inflammatory response is induced by growing organisms and toxins produced (LPS, protein A) as well as by the metabolically inactive organisms. Antibiotic-induced release of cell walls or their components may therefore exacerbate intraocular inflammation during endophthalmitis treatment. Adjunctive use of corticosteroids has been shown to effectively suppress inflammation in cases of meningitis or otitis media [48, 49]. But for treatment of endophthalmitis, beneficial role of corticosteroid administration have been contradictory. Topical and subconjunctival corticosteroids are widely accepted. However, use of corticosteroids given via the systemic and intravitreal routes in the treatment of endophthalmitis remains controversial. In experimental models of bacterial endophthalmitis, concomitant administration of dexamethasone was reported to be beneficial [50,51,52,53], had no effect [54], or was detrimental [55, 56] to infection outcome. Despite these conflicting results, intravitreal steroids are frequently used as an adjunct to antibiotic therapy in endophthalmitis [57].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Relhan, N., Flynn, H.W. (2018). Endophthalmitis Caused by Gram-Negative Bacteria. In: Das, T. (eds) Endophthalmitis . Springer, Singapore. https://doi.org/10.1007/978-981-10-5260-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5260-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5259-0

  • Online ISBN: 978-981-10-5260-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics