Skip to main content

Rhizobial Bioformulations: Past, Present and Future

  • Chapter
  • First Online:
Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

The nitrogen fixing bacterial group known as rhizobia are very important and are used as biological fertilizers for two main purposes; one is to fulfil the nutritional requirements of increasingly populated world and other to overcome the problems arising due to chemical fertilizers. Rhizobial bioformulations are in the market since more than a century and can be the solution for deficiency of nitrogen in our food and soils. Rhizobia maintain the soil fertility along with higher crop yields due to the capability of biological nitrogen fixation (BNF). Currently, various types of rhizobial biofertilizers are commercially available in the market all over the world for agricultural purposes. These can be solid carrier based formulations (organic and inorganic), liquid formulations (with and without additives), synthetic polymer based formulations or metabolite based formulations, but there still is a great room for improvement. However, over the years there have been subtle changes in the rhizobial inoculants in terms of production and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Issa AA, Ohyama T (2014a) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. InTech Open, Rijeka, p 282

    Google Scholar 

  • Abd-Alla MH, El-Enany AE, Nafady NA et al (2014b) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58

    Article  CAS  PubMed  Google Scholar 

  • Abd-Alla MH, Bashandy SR, Bagy MK et al (2014c) Rhizobium tibeticum activated with a mixture of flavonoids alleviates nickel toxicity in symbiosis with fenugreek (Trigonella foenumgraecum L.) Ecotoxicology 23(5):946–959

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aeron A, Khare E, Arora NK et al (2012) Practical use of CMC-amended rhizobial inoculant for Mucuna pruriens cultivation to enhance the growth and protection against Macrophomina phaseolina. J Gen Appl Microbiol 58(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F et al (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) Braz J Microbiol 44(4):1341–1348

    Article  PubMed  Google Scholar 

  • Alami Y, Achouak W, Marol C et al (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M et al (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Temprano FJ (2009) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in south Spain. Eur J Agron 30:205–211

    Article  Google Scholar 

  • Allito BB, Ewusi-Mensah N, Alemneh AA (2015) Rhizobia strain and host-legume interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol 6(2):1–6

    Google Scholar 

  • Alvarez GS, Pieckenstain FL, Desimone MF et al (2010) Evaluation of sol-gel silica matrices as inoculant carriers for Mesorhizobium spp. cells. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, pp 160–167

    Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov., and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Evol Microbiol 47(4):996–1006

    CAS  Google Scholar 

  • Anandham R, Sridar R, Nalayini P et al (2007) Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by coinoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol Res 162:139–153

    Article  CAS  PubMed  Google Scholar 

  • Annette A, Andrew L, Michelle L et al (2013) Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant Soil 369(1/2):543

    Google Scholar 

  • Ardley JK, Reeve WG, O’Hara GW et al (2013) Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l. Ann Bot 112(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bio-formulations for sustainable agriculture. Appl Soil Ecol. doi.org/10.1016/j.apsoil.2016.05.020

  • Arora NK, Kumar V, Maheshwari DK (2000) Isolation of both fast and slow growing rhizobia effectively nodulating a medicinal legume, Mucuna pruriens. Symbiosis 29:121–137

    Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, pp 241–245

    Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Naraian R et al (2008) Sawdust as a superior carrier for production of multipurpose bioinoculants using plant growth promoting rhizobial and pseudomonad strain and their impact on productivity of Trifolium repense. Curr Sci 95(1):90–94

    Google Scholar 

  • Arora NK, Khare E, Singh S et al (2009) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26(5):811–816

    Article  CAS  Google Scholar 

  • Arora NK, Maheshwari DK, Khare E (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization and future strategies. In: Maheshwari DK (ed) Bacteria and plant health. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Arora NK, Tewari S, Singh S et al (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer Publication, Dordrecht, pp 239–258

    Chapter  Google Scholar 

  • Arora NK, Tiwari S, Singh R (2014) Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainable agriculture. J Pharm Chem Biol Sci 2(2):143–149

    Google Scholar 

  • Arora NK, Verma M, Prakash J et al (2016) Regulation of biopesticides: global concerns and policies. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 283–299

    Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root nodule bacteria of the Leguminosae. J Bacteriol 17:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard RA, Charman N (2000) Nodulation and growth of pasture legumes with naturalised soil rhizobia 1. Annual Medicago spp. Aust J Exp Agric 40:939–948

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1988) Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. J Gen Microbiol 134:1811–1820

    Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR et al (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Kno¨llchen. Bot Ztg 46:740–750

    Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D (2002a) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 83:145–151

    Article  CAS  PubMed  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D et al (2002b) Wastewater sludge as a new medium for rhizobial growth. Water Qual Res J Can 37:353–370

    CAS  Google Scholar 

  • Ben Rebah F, Prévost D, Yezza A et al (2007) Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresour Technol 98:3535–3546

    Article  CAS  PubMed  Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the rhizobia: current perspectives. Br Microbiol Res J 4(6):616

    Article  Google Scholar 

  • Bezdicek DF, Kennedy AC (1998) In: Lynch JM, Hobbie JE (eds) Microorganisms in action. Blackwell, Oxford, p 243

    Google Scholar 

  • Bezdicek DF, Evans DW, Abeda B et al (1978) Evaluation of peat and granular inoculum for soybean yield and N fixation under irrigation. Agron J 70:865–868

    Google Scholar 

  • Bianco C, Senatore B, Arbucci S et al (2014) Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Appl Environ Microbiol 80(14):4286–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bioag.novozymes.com (2015) Novozymes BioAg Group. At http://www.bioag.novozymes.com

  • Bonish PM (1979) Clover rhizobia in soils: assessment of effectiveness using the plant infection count method. N Z J Agric Res 22:89–93

    Article  Google Scholar 

  • Bouizgarne B, Oufdou K, Ouhdouch Y (2015) Actinorhizal and rhizobial-legume symbioses for alleviation of abiotic stresses. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 273–295

    Google Scholar 

  • Boussingault J (1838) Recherches chimiques sur la vegetation enterprises dans le but d’examiner si les plantes prennent de I’atmosphere. Ann Chim Phys 67:1–54

    Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brito B, Palacios JM, Imperial J et al (2002) Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased symbiotic hydrogenase activity. Appl Environ Microbiol 68(5):2461–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockwell J (1982) Inoculation methods for field experimenters and farmers. In: Vincent JM (ed) Nitrogen fixation in legumes. Academic Press, Australia, pp 211–227

    Google Scholar 

  • Brockwell J (1985) Environmental interactions influencing innovative practices in legume inoculation. In: Shibles R (ed) Proceedings of the world soybean conference III. Westview Press, Boulder, pp 943–950

    Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brockwell J, Gault RR, Chase DL et al (1980) An appraisal of practical alternatives to legume seed inoculation: field experiments on seedbed inoculation with solid and liquid inoculants. Aust J Agric Res 31:47–60

    Article  Google Scholar 

  • Brockwell J, Holliday RA, Pilka A (1988) Evaluation of root-nodule bacteria introduced into field environment of the symbiotic nitrogen-fixing potential of soils by direct microbiological means. Plant Soil 108:163–170

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Burges HD, Jones KA (1998) Trends in formulation of microorganisms and future research requirements. In: Burges HD (ed) Formulation of microbial biopesticides, beneficial microorganisms, nematodes and seed treatment. Kluwer Academic Publication, Dordrecht, pp 311–332

    Chapter  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC et al (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chibeba AM, Guimarães MF, Brito OR et al (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649

    Article  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39(4):219–227

    Article  Google Scholar 

  • Ciccillo F, Fiore A, Bevivino A et al (2002) Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4:238–245

    Article  PubMed  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ et al (2004) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96

    Article  Google Scholar 

  • Crawford SL, Berryhill DL (1983) Survival of Rhizobium phaseoli in coal-based legume inoculants applied to seeds. Appl Environ Microbiol 45:703–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva JG, Serra GE, Moreira JR et al (1978) Energy balance for ethyl alcohol production for crops. Science 210:903–906

    Article  Google Scholar 

  • Damasceno R, Roggia I, Pereira C et al (2013) Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Can J Microbiol 59(11):716–719

    Article  CAS  PubMed  Google Scholar 

  • Dashti N, Prithiviraj B, Zhou X et al (2000) Combined effects of plant growth promoting rhizobacteria and genistein on nitrogen fixation in soybean at suboptimal root zone temperatures. J Plant Nutr 23:593–604

    Article  CAS  Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R et al (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium leguminosarum bv. trifolii and rice. In: Ladha JK, Reddy PM et al (eds) The quest for nitrogen fixation in rice. IRRI, Los Banos, pp 167–189

    Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology-a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • de Bruijn FJ (2016) “Biological Nitrogen Fixation” book summary. Adv Microbiol 6:407–411

    Article  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A et al (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  PubMed  Google Scholar 

  • Denardin ND, Freire JRJ (2000) Assessment of polymers for the formulation of legume inoculants. World J Microbiol Biotechnol 16:215–217

    Article  CAS  Google Scholar 

  • Deschodt CC, Strijdom WB (1976) Suitability of a coal bentonite base as carrier of rhizobia in inoculants. Phytophylactica 8:1–6

    CAS  Google Scholar 

  • Deshwal VK, Singh SB, Kumar P et al (2013) Rhizobia unique plant growth promoting rhizobacteria: a review. Int J Life Sci 2(2):74–86

    Google Scholar 

  • Diez-Mendez A, Menéndez E, García-Fraile P et al (2015) Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67(1):135–141

    Article  CAS  Google Scholar 

  • Diouf D, Forestier S, Neyra M et al (2003) Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with Rhizobium under greenhouse conditions. Ann For Sci 60:379–384

    Article  Google Scholar 

  • Dommergues YR, Diem HG, Divies D (1979) Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudeja SS, Singh NP, Sharma P et al (2011) Biofertilizer technology and pulse production. In: Singh A, Parmar N, Kuhad RC (eds) Bioaugmentation, biostimulation and biocontrol. Springer-Verlag, Berlin/Heidelberg, pp 43–63

    Chapter  Google Scholar 

  • Eckhardt MM, Baldwin IR, Fred EB (1931) Studies on the root-nodule bacteria of Lupinus. J Bacteriol 21:273–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • EPA (1997) Environmental protection act, fact sheet: commercialization of Sinorhizobium (Rhizobium) meliloti, RMBPC-2. At http://www.epa.gov/biotech_rule/pubs/factdft6.html

  • Ferguson BJ, Indrasumunar A, Hayashi S et al (2010) Molecular analysis of legume nodule development and auto regulation. J Integr Plant Biol 3:61–76

    Article  CAS  Google Scholar 

  • Fernandes-Júnior PI, Rohr TG, de Oliveira PJ et al (2009) Polymers as carriers for rhizobial inoculant formulations. Pesq Agrop Bras 44(9):1184–1190

    Article  Google Scholar 

  • Ferreira EM, Castro IV (2005) Residues of the cork industry as carriers for the production of legume inoculants. Silva Lusit 13:159–167

    Google Scholar 

  • Fitouri SD, Trabelsi D, Saïdi S et al (2012) Diversity of rhizobia nodulating sulla (Hedysarum coronarium L.) and selection of inoculant strains for semi-arid Tunisia. Ann Microbiol 62:77–84

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP et al (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Flores-Felix JD, Silva LR, Rivera LP et al (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4):e0122281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forestier S, Alvarado G, Badjel SB et al (2001) Effect of Rhizobium inoculation methodologies on nodulation and growth of Leucaena leucocephala. World J Microbiol Biotechnol 17:359–362

    Article  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges 7:332–346

    Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants, University of Wisconsin Studies in Science No.5. University of Wisconsin, Madison

    Google Scholar 

  • Fuchsius L (1542) De historia stirpium commentarii isignes. Michael Isingrin, Basel

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gamal-Eldin H, Elbanna K (2011) Field evidence for the potential of Rhodobacter capsulatus as biofertilizer for flooded rice. Curr Microbiol 62:391–395

    Article  CAS  PubMed  Google Scholar 

  • Garu G, Yates RJ, Deiana P et al (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  • Geetha SJ, Joshi SJ (2013) Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013:1–15

    Google Scholar 

  • Gomez M, Silva N, Hartmen A et al (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173

    Article  Google Scholar 

  • Granada CE, Strochein M, Vargas LK et al (2014) Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants. Genet Mol Biol 37(2):396–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Grand View Research (2015) Biofertilizers market analysis by product (nitrogen fixing, phosphate solubilizing), by application (seed treatment, soil treatment) and segment forecasts to 2022. Available at http://www.grandviewresearch.com/

  • Gu CT, Wang ET, Sui XH et al (2007) Diversity and geographical distribution of rhizobia associated with Lespedeza spp. in temperate and subtropical regions of China. Arch Microbiol 188:355–365

    Article  CAS  PubMed  Google Scholar 

  • Guthrie FB (1896) Inoculation of soil for leguminous crops. Agric Gaz NSW 7:690–694

    Google Scholar 

  • Gzyl A, Augustynowicz E, Mosiej E et al (2005) Amplified fragment length polymorphism (AFLP) versus randomly amplified polymorphic DNA (RAPD) as new tools for inter-and intra-species differentiation within Bordetella. J Med Microbiol 54(4):333–346

    Article  CAS  PubMed  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S et al (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomy 21:553–560

    Article  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Hawkesford M, Horst W, Kichey T et al (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 135–189

    Chapter  Google Scholar 

  • Hedin PA, McCarty JC (1994) Effects of several commercial plant growth regulator formulations on yield and allelochemicals of cotton (Gossypium hirsutum L.) Agric Food Chem 42:1355–1357

    Article  CAS  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen u¨ ber die Stickstoffnahrung der Gramineon und Leguminosen. Beilageheft zu der Ztschr. Ver. Ru¨ benzucker-Industrie Deutschen Reichs

    Google Scholar 

  • Herridge D, Gemell G, Hartley E (2002) Legume inoculants and quality control. ACIAR Proc 109:105–115

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Herrmann L, Atieno M, Brau L et al (2015) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: de Bruijn FJ (ed) Biological nitrogen fixation volume 2. Wiley, Hoboken, pp 1031–1040

    Google Scholar 

  • Humphry DR, Andrews M, Santos SR et al (2007) Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie Van Leeuwenhoek 91(2):105–113

    Article  PubMed  Google Scholar 

  • Hungria M, Campo RJ, Souza EM et al (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817

    Article  CAS  Google Scholar 

  • Hussain I, Arshad M, Zahir ZA et al (1995) Substrate dependent microbial production of auxins and their influence on growth and nodulation of lentil. Pak J Agric Sci 32:149–152

    Google Scholar 

  • Hynes RK, Jans DC, Bremer E et al (2001) Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Can J Microbiol 47:595–600

    Article  CAS  PubMed  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004) A Bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fertil Soils 40:432–434

    Article  CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK et al (2011) Bioencapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Giraud E, Béna G et al (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54(6):2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Jung G, Mugnier J, Diem HG et al (1982) Polymer entrapped Rhizobium as an inoculant for legumes. Plant Soil 65:219–231

    Article  CAS  Google Scholar 

  • Kaljeet S, Keyeo F, Amir HG (2011) Influence of carrier materials and storage temperature on survivability of rhizobial inoculant. Asian J Plant Sci 10:331–337

    Article  Google Scholar 

  • Kalra A, Chandra M, Awasthi A et al (2010) Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompost-based formulations. Biol Fertil Soils 46:521–524

    Article  Google Scholar 

  • Kandasamy R, Prasad NN (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Karaś MA, Turska-Szewczuk A, Trapska D et al (2015) Growth and survival of Mesorhizobium loti inside Acanthamoeba enhanced its ability to develop more nodules on Lotus corniculatus. Microb Ecol 70(2):566–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karuppasamy K, Nagaraj S, Kathiresan K (2011) Stress tolerant Rhizobium enhances the growth of Samanea saman (JECQ) Merr. Afr J Basic Appl Sci 3(6):278–284

    Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa- antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57(9):708–713

    Article  CAS  PubMed  Google Scholar 

  • Khavazi K, Rejali F, Seguin P et al (2007) Effects of carrier, sterilization method and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzym Microb Technol 41:780–784

    Article  CAS  Google Scholar 

  • Kneip C, Lockhart P, Voß C, Maier UG (2007) Nitrogen fixation in eukaryotes–new models for symbiosis. BMC Evol Biol 7(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Reddy MS et al (2003) Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: effect on seedling quality, disease and nematode resistance. Hortic Technol 13:476–482

    Google Scholar 

  • Kostov O, Lynch JM (1998) Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J Microbiol Biotechnol 14:389–397

    Article  Google Scholar 

  • Krapp A, Berthomé R, Orsel M et al (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157:1255–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer RJ, Peterson HL (1982) Effect of inoculant carrier on survival of Rhizobium on inoculated seed. Soil Sci 134:117–124

    Article  Google Scholar 

  • Kudoyarova GR, Korobova AV, Akhiyarova GR et al (2014) Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). J Exp Bot 65:2287–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoyarova GR, Arkhipova TN, Melent’ev AI (2015) Role of bacterial phytohormones in plant growth regulation and their development. In: Bacterial metabolites in sustainable agroecosystem. Springer, International Publishing, pp 69–86

    Google Scholar 

  • Lachmann J (1858) Über knollen an den wurzeln der leguminosen [About bulbous roots of the legume]. Landwirthschaftliche Mitteilungen. Z Koniglichen

    Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17

    Article  PubMed  Google Scholar 

  • Leibovitch S, Migner P, Zhang F et al (2001) Evaluation of the effect of SoyaSignal technology on soybean yield (Glycine max (L.) Merr.) under field conditions over 6 years in eastern Canada and the northern United States. J Agron Crop Sci 187:281–292

    Article  CAS  Google Scholar 

  • Li J, Zhang S, Shi S et al (2011) Four materials as carriers for phosphate dissolving Rhizobium sp. inoculants. Adv Mater Res 156–157:919–928

    Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón R et al (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290

    Article  CAS  PubMed  Google Scholar 

  • Löhis F, Hansen R (1921) Nodulating bacteria of leguminous plant. J Agric Res 20:543–556

    Google Scholar 

  • López-López A, Rogel MA, Ormeno-Orrillo E et al (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33(6):322–327

    Article  PubMed  Google Scholar 

  • Luce MS, Whalen JK, Ziadi N et al (2011) Nitrogen dynamics and indicesto predict soil nitrogen supply in humid temperate soils. Adv Agron 112:55

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15:289–321

    Article  CAS  Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A et al (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28(10):3015–3024

    Article  CAS  PubMed  Google Scholar 

  • Malpighi H (1679) Anatome plantarum. J Martyn Lond 99

    Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 1–12

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L et al (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Markets and Markets (2015) Biofertilizers market analysis by product (nitrogen fixing, phosphate solubilizing), by application (seed treatment, soil treatment) and segment forecasts to 2022. At http://www.marketsandmarkets.com/Market-Reports/compound-biofertilizers-customizedfertilizers-market-856.html

  • Marks BB, Megías M, Nogueira MA et al (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marks BB, Megías M, Ollero FJ et al (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 5:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maróti G, Kondorosi É (2014) Nitrogen-fixing Rhizobium-legume symbiosis are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5:326

    PubMed  PubMed Central  Google Scholar 

  • Maurice S, Beauclair P, Giraud JJ et al (2001) Survival and change in physiological state of Bradyrhizobium japonicum in soybean (Glycine max L. Merril) liquid inoculants after long-term storage. World J Microbiol Biotechnol 17:635–643

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Potential of NO and H2O2 as signalling molecules in tolerance to abiotic stress in plants. J Indust Res Technol 1(1):56–68

    Google Scholar 

  • Meng L, Zhang A, Wang F et al (2015) Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339

    PubMed  PubMed Central  Google Scholar 

  • Menna P, Pereira AA, Bangel EV et al (2009) Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48(1–3):120–130

    Article  CAS  Google Scholar 

  • Merwe SP, Strijdom BW, Uys CJ (1974) Groundnut response to seed inoculation under extensive agriculture practices in South African soils. Phytophylactica 6:295–302

    Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ et al (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combination, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W et al (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16(1–2):11–15

    Google Scholar 

  • Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275

    Article  CAS  Google Scholar 

  • Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 3–33

    Google Scholar 

  • Mmbaga GW, Mtei KM, Ndakidemi PA (2014) Extrapolations on the use of Rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric Sci 5(12):1207

    Google Scholar 

  • Mnasri B, Saïdi S, Chihaoui SA et al (2012) Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 35(4):263–269

    Article  CAS  PubMed  Google Scholar 

  • Morel MA, Cagide C, Minteguiaga MA et al (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant-Microbe Interact 28:134–142

    Article  CAS  PubMed  Google Scholar 

  • Morel MA, Cagide C, Castro-Sowinski S (2016) The contribution of secondary metabolites in the success of bioformulations. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 235–250

    Google Scholar 

  • Muñoz N, Soria-Díaz ME, Manyani H et al (2014) Structure and biological activities of lipochitooligosaccharide nodulation signals produced by Bradyrhizobium japonicum USDA 138 under saline and osmotic stress. Biol Fertil Soils 50:207–215

    Article  CAS  Google Scholar 

  • Nápoles MC, Guevara E, Montero F et al (2009) Role of Bradyrhizobium japonicum induced by genistein on soybean stressed by water deficit. Span J Agric Res 7:665–671

    Article  Google Scholar 

  • Naveed M, Mehboob I, Hussain MB et al (2015) Perspectives of rhizobial inoculation for sustainable crop production. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 209–239

    Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag 10:301–305

    Google Scholar 

  • Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. U.S. Patent 570 813

    Google Scholar 

  • Odee DW, Indieka SA, Lesueur D (2002) Evaluation of inoculation procedures for Calliandra calothyrsus Meisn. grown in tree nurseries. Biol Fertil Soils 36:124–128

    Article  Google Scholar 

  • Ogasawara M, Suzuki T, Mutoh I et al (2003) Sinorhizobium indiaense sp. nov., and Sinorhizobium abri sp. nov., isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68

    Google Scholar 

  • Olah B, Briere C, Becard G et al (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  CAS  PubMed  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM et al (1994) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Article  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM et al (1996) Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 42:72–75

    Article  CAS  PubMed  Google Scholar 

  • Olufajo OO, Adu JK (1993) Nodulation of soyabeans grown under field conditions and inoculated with Bradyrhizobium japonicum strains. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, New York, pp 147–154

    Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paau AS, Graham LL, Bennett M (1991) Progress in formulation research for PGPR and biocontrol inoculants. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria-progress and prospects. IOBC/WPRS Bulletin, Zurich, pp 399–403

    Google Scholar 

  • Pan B, Smith DL (2000) Pre-incubation of Bradyrhizobium japonicum cells with genistein reduces the inhibitory effects of mineral nitrogen on soybean nodulation and nitrogen fixation under field conditions. Plant Soil 223:235–242

    CAS  Google Scholar 

  • Parra-Cota FI, Peña-Cabriales JJ, de los Santos-Villalobos S et al (2014) Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One 9(2):88–94

    Article  CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF et al (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Philpotts H (1976) Filter mud as a carrier for Rhizobium inoculants. J Appl Bacteriol 41:277–281

    Article  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2013) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestic 3:124

    Google Scholar 

  • Pongslip N (2012) Phenotypic and genotypic diversity of rhizobia. Bentham Science Publishers, Thailand, p 201

    Google Scholar 

  • Prithiviraj B, Zhou X, Souleimanov A et al (2003) A host specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445

    CAS  PubMed  Google Scholar 

  • Pugashetti BK, Gopalgowda HS, Patil RB (1971) Cellulose powder as legume inoculant base. Curr Sci 40:494–495

    Google Scholar 

  • Qiu M, Li S, Zhou X et al (2014) De-coupling of root-microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biol Fertil Soils 50(2):217–224

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi MA, Ahmad ZA, Akhtar N et al (2012) Role of phosphate solubilizing bacteria (PSB) in enhancing P-availability and promoting cotton growth. J Anim Plant Sci 22:204–210

    CAS  Google Scholar 

  • Qureshi MA, Shahzad H, Imran Z et al (2013) Potential of Rhizobium species to enhance growth and fodder yield of maize in the presence and absence of L-tryptophan. J Anim Plant Sci 23(5):1448–1454

    CAS  Google Scholar 

  • Raja Sekar K, Karmegam N (2010) Earthworm casts as an alternate carrier material for biofertilizers: assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hortic 124:286–289

    Article  Google Scholar 

  • Rajwar A, Sahgal M, Johri BN (2013) Legume-rhizobia symbiosis and interactions in agroecosystems. In: Arora NK (ed) Plant microbe symbiosis-fundamentals and advances. Springer, New Delhi, pp 233–265

    Chapter  Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT et al (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 6:1116

    PubMed  PubMed Central  Google Scholar 

  • Rao DLN (2014) Recent advances in biological nitrogen fixation in agricultural systems. Proc Indian Natl Sci Acad 80(2):359–378

    Article  Google Scholar 

  • Revellin C, Meunier G, Giraud JJ et al (2000) Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage. Appl Microbiol Biotechnol 54:206–211

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS et al (2003) Description of Devosia neptuniae sp. nov., that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Rivera D, Obando M, Barbosa H et al (2014) Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ Sci 19(3):265–275

    Article  CAS  Google Scholar 

  • Roberto SR, Marinho de Assis A, Yamamoto LY et al (2012) Application timing and concentration of abscisic acid improve color of “Benitak” table grape. Sci Hortic 142:44–48

    Article  CAS  Google Scholar 

  • Rodrigues AC, Silveira JAG, Bonifacio A et al (2013) Metabolism of nitrogen and carbon: optimization of biological nitrogen fixation and cowpea development. Soil Biol Biochem 67:226–234

    Article  CAS  Google Scholar 

  • Rodrigues AC, Vendruscolo CT, Moreira AS et al (2015) Rhizobium tropici exopolysaccharides as carriers improve the symbiosis of cowpea-Bradyrhizobium-Paenibacillus. Afr J Microbiol Res 9(37):2037–2050

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Temprano F, Orive R (1991) Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol Biochem 23:375–379

    Article  Google Scholar 

  • Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65(8):1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Rohr TG (2007) Rheological study of the mixture carboxymethylcellulose/starch and its use as a vehicle for the bacterial inoculation. Dissertation, Rural Federal University of Rio de Janeiro

    Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F et al (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Rubiya E (2006) Coaggregated diazotrophic cultures- a novel delivery system of bioinoculation for lowland rice (Oryza sativa L.). Dissertation, Aannamalai University

    Google Scholar 

  • Ruíz-Valdiviezo VM, Canseco LMCV, Suárez LAC et al (2015) Symbiotic potential and survival of native rhizobia kept on different carriers. Braz J Microbiol 46(3):735–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassi-Aydi S, Aydi S, Abdelly C (2012) Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar. Acta Agric Scand B-S P 62(2):179–187

    CAS  Google Scholar 

  • Sheu SY, Chou JH, Bontemps C et al (2012) Burkholderia symbiotica sp nov., isolated from root nodules of Mimosa spp. native to north-east Brazil source. Int J Syst Evol Microbiol 62:2272–2278

    Article  CAS  PubMed  Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam, vol 109e. ACIAR Proceedings, Canberra, pp 52–66

    Google Scholar 

  • Sivakumar PK, Parthasarthi R, Lakshmipriya VP (2014) Encapsulation of plant growth promoting inoculant in bacterial alginate beads enriched with humic acid. Int J Curr Microbiol Appl Sci 3:415–422

    Google Scholar 

  • Sivasakthivelan P, Saranraj P (2013) Azospirillum and its formulations: a review. Int J Microbiol Res 4(3):275–287

    Google Scholar 

  • Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch and the transformation of world food production. The MIT Press, Cambridge, MA, p 338

    Google Scholar 

  • Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 653–657

    Chapter  Google Scholar 

  • Smith D, Zhang F (1999) Composition for enhancing grain yield and protein yield of legumes grown under environmental conditions that inhibit or delay nodulation thereof, US Patent No. 5.922.316. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Smith RS, Ellis MA, Smith RE (1981) Effect of Rhizobium japonicum inoculant rates on soybean nodulation in a tropical soil. Agron J 73:505–508

    Article  Google Scholar 

  • Soares ALL, Ferreira PAA, Pereira JPAR et al (2006) Selected rhizobia of agronomic efficiency and diversity of native nodulating populations pardons (MG).II – bean. R Bras Ci Solo 30:803–811

    Article  CAS  Google Scholar 

  • Soe KM, Yamakawa T (2013) Low-density coinoculation of Myanmar Bradyrhizobium yuanmingense MAS34 and Streptomyces griseoflavus P4 to enhance symbiosis and seed yield in soybean varieties. Am J Plant Sci 4(09):1879

    Article  Google Scholar 

  • Somasegaran P (1991) Inoculant production with emphasis on choice of carriers, methods of production and reliability testing/quality assurance guidelines. In: Thompson JA (ed) Report on the expert consultation on legume inoculant production and quality control. FAO, Rome, pp 87–106

    Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia. Springer, New York, p 450

    Book  Google Scholar 

  • Sparrow SD, Ham GE (1983) Survival of Rhizobium phaseoli in six carrier materials. Agron J 75:181–184

    Article  Google Scholar 

  • Strijdom BW, van Rensburg HJ (1981) Effect of steam sterilization and gamma irradiation of peat on quality of Rhizobium inoculants. Appl Environ Microbiol 41(6):1344–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suman A, Verma P, Yadav AN et al (2016) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901

    Article  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1(12):532–556

    Google Scholar 

  • Tajini F, Trabelsi M, Drevon J (2011) Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 53:123–129

    Article  CAS  Google Scholar 

  • Talbi C, Argandoña M, Salvador M et al (2013) Burkholderia phymatum improves salt tolerance of symbiotic nitrogen fixation in Phaseolus vulgaris. Plant Soil 367:673–685

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Temprano FJ, Albareda M, Camacho M et al (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Arora NK (2014) Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions. Cell Mol Biol 60(5):73–81

    CAS  PubMed  Google Scholar 

  • Thakare CS, Rasal PH (2000) Evaluation of efficient Rhizobium strains for groundnut. Legum Res 23(4):259–261

    Google Scholar 

  • Thenmozhi P, Dinakar S (2014) Exopolysaccharides (EPS) mediated induction of systemic resistance (ISR) in Bacillus-Fusarium oxysporum f. sp. lycopersici pathosystem in tomato (var. PKM-1). Int J Curr Microbiol App Sci 3(9):839–846

    CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Modeling symbiotic performance of introduced rhizobia in the field by uses of indices of population size and nitrogen status of the soil. Appl Environ Microbiol 57:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CF, Wang ET, Wu LJ et al (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58(12):2871–2875

    Article  CAS  PubMed  Google Scholar 

  • Tilak KVBR, Subba Rao NS (1978) Carriers for legume (Rhizobium) inoculants. Fert News 23:25–28

    Google Scholar 

  • Trujillo ME, Willems A, Abril A et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Berkum P, Beyene D, Baa G et al (1998) Rhizobium mongolense sp. nov., is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22

    Article  PubMed  Google Scholar 

  • Van Schreven DA, Harmsen GW, Lindenbergh DT et al (1953) Experiments on the cultivation of Rhizobium in liquid media for use on zindderzee polders. Antonie van Leeuwenhoek 19:300–308

    Article  Google Scholar 

  • Vandergheynst JS, Scher HB, Gou HY et al (2007) Water in oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. BioControl 52:207–229

    Article  CAS  Google Scholar 

  • Vassileva V, Ignatov G (2002) Relationship between bacteroid poly-β-hydroxybutyrate accumulation and nodule functioning in the Galega orientalis-Rhizobium galegae symbiosis under diamine treatment. Physiol Plant 114(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN et al (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Waelkens F, Voets T, Vlassak K et al (1995) The nodS gene of Rhizobium tropici strain CIAT899 is necessary for nodulation on Phaseolus vulgaris and on Leucaena leucocephala. Mol Plant-Microbe Interact 8:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, Martínez-Romero E (2000) Sesbania herbaceaRhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb Ecol 40(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Waswa MN (2013) Identifying elite rhizobia for commercial soybean (Glycine max) inoculants. Dissertation, Agricultural Technology, University of Nairobi

    Google Scholar 

  • Woronin MS (1866) U¨ ber die bei der Schwarzerle (Alnus glutinosa) und bei der gewo¨hnlichen Gartenlupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Me’moires de l’Academie Impe’riale des Sciences de St. Pe’tersbourg, VII Series, vol. X

    Google Scholar 

  • Xu S, Liu Y, Wang J et al (2015) Isolation and potential of Ochrobactrum sp. NW-3 to increase the growth of cucumber. Int J Agric Policy Res 3(9):341–350

    Google Scholar 

  • Zahir ZA, Kashif Shah M, Naveed M et al (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  • Zerpa M, Mayz J, Méndez J (2013) Effects of Bradyrhizobium japonicum inoculants on soybean (Glycine max (L.) Merr.) growth and nodulation. Ann Biol Res 4(7):193–199

    Google Scholar 

  • Zhang F, Smith DL (2002) Inter-organismal signalling in suboptimal environments: the legume-rhizobia symbiosis. Adv Agron 76:125–161

    Article  CAS  Google Scholar 

  • Zhao LF, Xu YJ, Ma ZQ et al (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44(2):623–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu R, Tang F, Liu J et al (2016) Co-inoculation of arbuscular mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions. Pak J Bot 48(2):763–769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arora, N.K., Verma, M., Mishra, J. (2017). Rhizobial Bioformulations: Past, Present and Future. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_4

Download citation

Publish with us

Policies and ethics