Skip to main content

Productivity Analysis of South Korean Industrial Sector

  • Chapter
  • First Online:
  • 260 Accesses

Part of the book series: Lecture Notes in Energy ((LNEN,volume 59))

Abstract

This chapter presents empirical findings on industrial productivity changes in South Korea between 1980 and 2009, focusing on how investment in ICT and energy use, influence the productivity growth. A dynamic factor demand model is applied which allows for considerable flexibility in the choice of the functional form of the production technology, and in the expectation formation process. The objective is to estimate the production structure, and the demand for energy, materials, labors, ICT capital, and non-ICT capital for 30 South Korean industrial sectors. In particular the focus is on the ICT capital-energy use relationship, and the effect of this relationship on the TFP growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The assumptions are (i) producers are in long run equilibrium, (ii) the technology exhibits constant returns to scale, (iii) output and inputs markets are competitive, and (iv) input factors are utilized at a constant rate (Nadiri and Prucha 2001).

  2. 2.

    See Fig. 7.4 and Table 7.5 for comparing between the industrial characteristics and the rate of technical change.

Bibliography

  • Altunbaş, Y., Gardener, E. P. M., Molyneux, P., & Moore, B. (2001). Efficiency in European banking. European Economic Review, 45(10), 1931–1955. doi:10.1016/S0014-2921(00)00091-X

    Article  Google Scholar 

  • Baltagi, B. H., & Griffin, J. M. (1997). Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline. Journal of Econometrics, 77(2), 303–327. doi:10.1016/S0304-4076(96)01802-7

    Article  MATH  Google Scholar 

  • Belorgey, N., Lecat, R., & Maury, T. P. (2006). Determinants of productivity per employee: An empirical estimation using panel data. Economics Letters, 91(2), 153–157. doi:10.1016/j.econlet.2005.09.003

    Article  Google Scholar 

  • Berndt, E. R., & Fuss, M. A. (1986). Productivity measurement with adjustments for variations in capacity utilization and other forms of temporary equilibrium. Journal of Econometrics, 33(1–2), 7–29. doi:10.1016/0304-4076(86)90025-4

    Article  Google Scholar 

  • Berndt, E. R., & Morrison, C. J. (1981). Capacity utilization measures—underlying economic-theory and an alternative approach. American Economic Review, 71(2), 48–52. doi:10.2307/1815691

    Google Scholar 

  • Borensztein, A., & Lee, J.-W. (2000). Financial crisis and credit crunch in Korea: Evidence from firm level data. Working Paper WP/00/25. International Monitory Fund. Accessed April 11, from http://citesource.trincoll.edu/apa/apaworkingpaper.pdf

  • Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). Multilateral comparisons of output, input, and productivity using superlative index numbers. Economic Journal, 92(365), 73–86. doi:10.2307/2232257

    Article  Google Scholar 

  • Caves, D. W., Christensen, L. R., & Swanson, J. A. (1981). Productivity growth, scale economies, and capacity utilization in U.S. railroads, 1955–74. The American Economic Review, 71(5), 994–1002. doi:10.2307/1803480

    Google Scholar 

  • Cho, Y., Lee, J., & Kim, T.-Y. (2007). The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach. Energy Policy, 35(9), 4730–4738. doi:10.1016/j.enpol.2007.03.030

    Article  Google Scholar 

  • Denny, M., Fuss, M. A., & Waverman, L. (1981). Substitution possibilities for energy: Evidence from US and Canadian manufacturing industries. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution (pp. 230–288). MIT Press.

    Google Scholar 

  • Diewert, W. E. (1976). Exact and superlative index numbers. Journal of Econometrics, 4(2), 115–145. doi:10.1016/0304-4076(76)90009-9

    Article  MathSciNet  MATH  Google Scholar 

  • Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression. Biometrika, 37(3/4), 409–428. doi:10.2307/2332391

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, S. (1992). Trade orientation, distortions and growth in developing countries. Journal of Development Economics, 39(1), 31–57. doi:10.1016/0304-3878(92)90056-f

    Article  Google Scholar 

  • Erdmann, L., & Hilty, L. M. (2010). Scenario analysis exploring the macroeconomic impacts of information and communication technologies on greenhouse gas emissions. Journal of Industrial Ecology, 14(5), 826–834. doi:10.1111/j.1530-9290.2010.00277.x

    Article  Google Scholar 

  • Ethier, W. J. (1982). National and international returns to scale in the modern theory of international-trade. American Economic Review, 72(3), 389–405. doi:10.2307/1831539

    Google Scholar 

  • Fukao, K., Miyagawa, T., & Pyo, H. K. (2009). Estimates of multifactor productivity, ICT contributions and resource reallocation effects in Japan and Korea. RIETI Working Paper 09-E-021. The Research Institute of Economy, Trade and Industry. Last Modified May, 18, 2013. Accessed May 12. http://www.rieti.go.jp/jp/publications/dp/09e021.pdf

  • Hanoch, G. (1975). The elasticity of scale and the shape of average costs. The American Economic Review, 65(3), 492–497. doi:10.2307/1804855

    Google Scholar 

  • Hauver, J. H., Yee, J., & Ball, Y. E. (1991). Capacity utilization and measurement of agricultural productivity. Washington DC, U.S: Resources and Technology Division, Economic Research Service, Department of Agriculture ERS Technical Bulletin No. 1798.

    Google Scholar 

  • Hong, H. J. (2012). IT-caused shifts in labor demand. In Information Science and Service Science and Data Mining (ISSDM), 2012 6th International Conference on New Trends in, Taipei, Taiwan.

    Google Scholar 

  • Hulten, C. R. (1973). Divisia index numbers. Econometrica, 41(6), 1017–1025. doi:10.2307/1914032

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang, A. R. (2003). Exports, returns to scale, and total factor productivity: The case of Taiwanese manufacturing industries. Review of Development Economics, 7(2), 204–216. doi:10.1111/1467-9361.00186

    Article  Google Scholar 

  • Jorgenson, D. W., & Griliches, Z. (1967). The explanation of productivity change. The Review of Economic Studies, 34(3), 249–283. doi:10.2307/2296675

    Article  Google Scholar 

  • Khayyat, N. T. (2013). Exploring demand for energy in the South Korean industries. (Doctoral dissertation). Economics, SMC University.

    Google Scholar 

  • Khayyat, N. T., & Heshmati, A. (2014). Production risk, energy use efficiency and productivity of Korean industries. Centre of Excellence for Science and Innovation Studies. Accessed May 12. https://static.sys.kth.se/itm/wp/cesis/cesiswp359.pdf

  • Kim, J., & Heo, E. (2014). Effect of ICT capital on the demands for labor and energy in major industries of Korea, US, and UK. Environmental and Resource Economics Review, 23(1), 32–91.

    Google Scholar 

  • Kim, S., & Han, G. (2001). A decomposition of total factor productivity growth in Korean manufacturing industries: A stochastic frontier approach. Journal of Productivity Analysis, 16(3), 269–281. doi:10.1023/A:1012566812232

    Article  MathSciNet  Google Scholar 

  • Kim, S. T. (1997). The role of local public sectors in regional economics growth in Korea. Asian Economic Journal, 11(2), 155–168.

    Article  Google Scholar 

  • Kiviet, J. F. (1995). On bias, inconsistency, and efficiency of various estimators in dynamic panel data models. Journal of Econometrics, 68(1), 53–78. doi:10.1016/0304-4076(94)01643-E

    Article  MathSciNet  MATH  Google Scholar 

  • Krueger, A. O., & Tuncer, B. (1982). Growth of factor productivity in Turkish manufacturing industries. Journal of Development Economics, 11(3), 307–325. doi:10.1016/0304-3878(82)90009-8

    Article  Google Scholar 

  • Krugman, P. (1994). The myth of Asia’s miracle. Foreign Affairs, 73(1), 62–78.

    Article  Google Scholar 

  • Kwack, S. Y., & Sun, L. Y. (2005). Economies of scale, technological progress, and the sources of economic growth: Case of Korea, 1969–2000. Journal of Policy Modeling, 27(3), 265–283. doi:10.1016/j.jpolmod.2004.08.012

    Article  Google Scholar 

  • Lee, J.-K. (1995). Comparative performance of short-run capacity utilization measures. Economics Letters, 48(3–4), 293–300. doi:10.1016/0165-1765(94)00640-N

    Article  MATH  Google Scholar 

  • Maddison, A. (2005). Monitoring the world economy. Paris: OECD, Development Center Studies.

    Google Scholar 

  • Mokyr, J. (2005). Long-term economic growth and the history of technology. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth (pp. 1113–1180). Elsevier.

    Google Scholar 

  • Morrison, C. J. (1986). Productivity measurement with non-static expectations and varying capacity utilization: An integrated approach. Journal of Econometrics, 33(1–2), 51–74. doi:10.1016/0304-4076(86)90027-8

    Article  MATH  Google Scholar 

  • Nadiri, M. I. (1993). Output and labor productivity, R&D expenditure and catch-up scenarios: A comparison of the US, Japanese, and Korean manufacturing Sectors. Accessed August 22. http://www.econ.nyu.edu/user/nadiri/pub79.PDF

  • Nadiri, M. I., & Prucha, I. R. (1986). A comparison of alternative methods for the estimation of dynamic factor demand models under non-static expectations. Journal of Econometrics, 33(1), 187–211.

    Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1990). Dynamic factor demand models, productivity measurement, and rates of return: Theory and an empirical application to the US bell system. Structural Change and Economic Dynamics, 1(2), 263–289.

    Article  Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1996). Estimation of the depreciation rate of physical and R&D capital in the U.S. total manufacturing sector. Economic Inquiry, 34(1), 43–56. doi:10.1111/j.1465-7295.1996.tb01363.x

    Article  Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1999). Dynamic factor demand models and productivity analysis. NBER Working Paper 7079. National Bureau of Economic Research Working Paper Series. Accessed March 23. http://www.nber.org/papers/w7079.pdf

  • Nadiri, M. I., & Prucha, I. R. (2001). Dynamic factor demand models and productivity analysis. In Charles R. Hulten, Edwin R. Dean, & Michael J. Harper (Eds.), New developments in productivity analysis (pp. 103–172). Chicago and London: The University of Chicago Press.

    Chapter  Google Scholar 

  • Oh, D., Heshmati, A., & Lööf, H. (2012). Technical change and total factor productivity growth for Swedish manufacturing and service industries. Applied Economics, 44(18), 2373–2391. doi:10.1080/00036846.2011.564147

    Article  Google Scholar 

  • Oh, I., Heshmati, A., Baek, C., & Lee, J.-D. (2009). Comparative analysis of plant dynamics by size: Korean manufacturing. Japanese Economic Review, 60(4), 512–538. doi:10.1111/j.1468-5876.2009.00470.x

    Article  Google Scholar 

  • Oh, I., Lee, J.-D., & Heshmati, A. (2008). Total factor productivity in Korean manufacturing industries. Global Economic Review, 37(1), 23–50. doi:10.1080/12265080801911907

    Article  Google Scholar 

  • Park, G. M., & Park, Y. (2003). An empirical analysis of the inter-industrial spillover effect of information and communications technology on cost and labor—The case of Korea. Journal of Scientific & Industrial Research, 62(3), 157–167.

    Google Scholar 

  • Park, P. H. (2000). A reflection on the east asian development model: Comparison of the south korean and taiwanese experiences. In R. Frank-Jurgen (Ed.), Thailand, Japan, and the East Asian Development Model (pp. 141–168). London: Macmillan Press.

    Google Scholar 

  • Park, S. R. (2014). Elasticity of substitution between ict capital and labor: Its implications on the creative economy in Korea. In 2014 Joint Conference of the Korean Economic Association, Sungkyunkwan University, Seoul, Korea, February 2.

    Google Scholar 

  • Park, S. R., & Kwon, J. K. (1995). Rapid economic growth with increasing returns to scale and little or no productivity growth. The Review of Economics and Statistics, 77(2), 332–351. doi:10.2307/2109869

    Article  Google Scholar 

  • Pindyck, R. S., & Rubinfeld, L. D. (2012). Microeconomics: International Edition (8th ed.). USA: Pearson Higher Ed.

    Google Scholar 

  • Pyo, H. K., Rhee, K. H., & Ha, B. C. (2007). Growth accounting and productivity analysis by 33 industrial sectors in Korea (1984–2002). In D. W. Jorgenson, M. Kuroda, & K. Motohashi (Eds.), Productivity in Asia: Economics growth and competitiveness. U.K: Bodmin, Cornwall: MPG Books Ltd.

    Google Scholar 

  • Richter, M. K. (1966). Invariance axioms and economic indexes. Econometrica, 34(4), 739–755. doi:10.2307/1910096

    Article  MATH  Google Scholar 

  • Røpke, I., & Christensen, T. H. (2012). Energy impacts of ICT—Insights from an everyday life perspective. Telematics and Informatics, 29(4), 348–361. doi:10.1016/j.tele.2012.02.001

    Article  Google Scholar 

  • SAS Institute Inc. (1993). SAS/ETS User’s Guide, Version 6. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schumpeter, J. (1939). Business cycles: A theoretical, historical, and statistical analysis of the capitalist process (Vol. 2). New York: McGraw-Hill.

    Google Scholar 

  • Shephard, R. W. (1953). Cost and production functions. Princeton, USA: Princeton University Press.

    Google Scholar 

  • Solow, R. M. (1957). Technical change and the aggregate production function. The Review of Economics and Statistics, 39(3), 312–320. doi:10.2307/1926047

    Article  MathSciNet  Google Scholar 

  • Stefanou, S. E. (1989). Returns to scale in the long run: The dynamic theory of cost. Southern Economic Journal, 55(3), 570–579. doi:10.2307/1059573

    Article  Google Scholar 

  • Tangen, S. (2002, December). Understanding the concept of productivity. In Proceedings of the 7th Asia-Pacific Industrial Engineering and Management Systems Conference, Taipei.

    Google Scholar 

  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • van Ark, B., Inklaar, R., & McGuckin, R. H. (2003). ICT and productivity in Europe and the United States Where do the differences come from? CESifo Economic Studies, 49(3), 295–318. doi:10.1093/cesifo/49.3.295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabaz T. Khayyat .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Khayyat, N.T. (2017). Productivity Analysis of South Korean Industrial Sector. In: ICT Investment for Energy Use in the Industrial Sectors. Lecture Notes in Energy, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-4756-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4756-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4755-8

  • Online ISBN: 978-981-10-4756-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics