Skip to main content

Adapting Sheep Production to Climate Change

  • Chapter
  • First Online:
Sheep Production Adapting to Climate Change

Abstract

Apart from contributing to the climate change phenomenon, sheep production system is also sensitive to its adverse impacts. This poses a great challenge for developing sheep sector around the world. Currently the economic viability of the sheep production system worldwide is jeopardized due to the devastating effects of climate change. Among the multiple climatic stresses faced by sheep, heat stress seems to hugely destabilize production efficiency of the animals. Heat stress jeopardizes the growth, wool, meat and milk production in sheep. Further, climate change leads to several vector borne diseases to sheep by compromising the immune status of the animals. The animal employs several adaptive mechanisms to maintain homeostasis through behavioural, physiological, neuroendocrine, cellular and molecular responses to cope up to the existing climatic condition. Sheep also significantly contributes to climate change through enteric methane emission and manure management. Further, climate change can alter the rumen function and diet digestibility in sheep. Hence, enteric methane mitigation is of paramount importance to prevent both the climate change and dietary energy loss which may pave way for sustaining the economic return from these animals. Further, various other strategies are required to counter the detrimental effects of climate change on sheep production. The management strategies can be categorized as housing management, animal management and monitoring of climate, and these strategies are ultimately targeted to provide suitable microclimate for optimum sheep production. Nutritional interventions involving season-specific feeding and micronutrient supplementation may help the animal to sustain its production during adverse environmental conditions. Body condition scoring system developed specifically for sheep may help to optimize economic return in sheep farms by minimizing the input costs. Finally, sufficient emphasis must be given to develop appropriate adaptation strategies involving policymakers. These strategies include developing thermotolerant breeds using biomarkers, ensured water availability, women empowerment, early warning system and capacity building programmes for all the stakeholders. These efforts may help in augmenting sheep production in the climate change scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal A, Upadhyay R (2013) Heat stress and immune function. In: Heat Stress and Animal Productivity. Springer, New Delhi, pp 113–136

    Chapter  Google Scholar 

  • Alhidary IA, Shini S, Al Jassim RAM, Gaughan JB (2012) Physiological responses of Australian Merino wethers exposed to high heat load. J Anim Sci 90:212–220

    Article  CAS  PubMed  Google Scholar 

  • Armstrong G, Gong JG, Webb R (2002) Interactions between nutrition and ovarian activity in cattle: physiological, cellular and molecular mechanisms. Reproduction (Cambridge, England) supplement, 61: 403–414

    Google Scholar 

  • Banerjee D, Upadhyay RC, Chaudhary UB, Kumar R, Singh S, Mohanarao J, Polley S, Mukherjee A, Das TK, De S (2014) Seasonal variation in expression pattern of genes under HSP70. Cell Stress Chaperones 19(3):401–408

    Article  CAS  PubMed  Google Scholar 

  • Basher R (2006) Global early warning systems for natural hazards: systematic and people-centred. Philos Trans R Soc London A Math Phys Eng Sci 364(1845):2167–2182

    Article  Google Scholar 

  • Baumgard LH, Rhoads RP, Rhoads ML, Gabler NK, Ross JW, Keating AF, Boddicker RL, Lenka S, Sejian V (2012) Impact of climate change on livestock production. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer/GMbH Publisher, Heidelberg, pp 413–468

    Chapter  Google Scholar 

  • Beam SW, Butler WR (1999) Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. J Reprod Fert Suppl 54:411–424

    CAS  Google Scholar 

  • Beatty DT, Barnes A, Fleming PA, Taylor E, Maloney SK (2008) The effect of fleece on core and rumen temperature in sheep. J Therm Biol 33:437–443

    Article  Google Scholar 

  • Beede DK, Collier RJ (1986) Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 62:543–554

    Article  CAS  Google Scholar 

  • Bell MJ, Wall E, Simm G, Russell G (2011) Effects of genetic line and feeding system on methane emissions from dairy systems. Anim Feed Sci Technol 166:699–707

    Article  CAS  Google Scholar 

  • Bell M, Eckard R, Moate PJ, Yan T (2016) Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows. Animals 6(9):54

    Article  PubMed Central  Google Scholar 

  • Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(07):1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (2014) At risk: natural hazards, people's vulnerability and disasters. Routledge

    Google Scholar 

  • Broucek J (2014) Methods of methane measurement in ruminants. Slovak J Anim Sci 47(1):51–60

    Google Scholar 

  • Bunting LD, Howard MD, Muntifering RB, Dawson KA, Boling JA (1987) Effect of feeding frequency on forage fiber and nitrogen utilization in sheep. J Anim Sci 64(4):1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Butterfield RM, Thompson JM (1983) Changes in body composition relative to weight and maturity of large and small strains of Australian Merino rams. 4. Fat depots and bones. Anim Prod 37(03):423–431

    Article  Google Scholar 

  • Chanjula P, Pakdeechanuan P, Wattanasit S (2014) Effects of dietary crude glycerin supplementation on nutrient digestibility, ruminal fermentation, blood metabolites, and nitrogen balance of goats. Asian Australas J Anim Sci 27(3):365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan SS, Celi P, Fahri FT, Leury BJ, Dunshea FR (2014) Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress. J Anim Sci 92(11):4897–4908

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci 84(13_suppl):E1–E13

    Article  PubMed  Google Scholar 

  • Dang AK, Naqvi SMK, Mittal JP (1998) Comparative physiological response of native and crossbred lambs under semi-arid conditions. Indian Vet J 75:546–547

    Google Scholar 

  • Daramola JO, Abioja MO, Onagbesa OM (2012) Heat stress impact on livestock production. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer/GMbH Publisher, Heidelberg, pp 53–74

    Chapter  Google Scholar 

  • Delgado CL (2003) Rising consumption of meat and milk in developing countries has created a new food revolution. J Nutr 133(11):3907S–3910S

    CAS  PubMed  Google Scholar 

  • Diwivedi ISD (1976) Studies on the adaptability of exotic breeds of sheep and their crosses with indigenous breeds I. Fluctuation in body temperature, pulse rate and respiration. Indian Vet J 53:938–942

    Google Scholar 

  • Duske K, Hammon HM, Langhof AK, Bellmann O, Losand B, Nürnberg K, Nürnberg G, Sauerwein H, Seyfert HM, Metges CC (2009) Metabolism and lactation performance in dairy cows fed a diet containing rumen-protected fat during the last twelve weeks of gestation. J Dairy Sci 92(4):1670–1684

    Article  CAS  PubMed  Google Scholar 

  • FAO (2006) Climate change and disaster risk management. FAO, Rome

    Google Scholar 

  • FAO (2009) The state of food and agriculture, Rome, Italy. www.fao.org/docrep/012/i0680e/i0680e.pdf

  • FAO (2013) World livestock 2013 – changing disease landscapes. FAO, Rome

    Google Scholar 

  • Feng J, Zhang M, Zheng S, Xie P, Ma A (2008) Effects of high temperature on multiple parameters of broilers in vitro and in vivo. Poult Sci 87(10):2133–2139

    Article  CAS  PubMed  Google Scholar 

  • Finocchiaro R, Van Kaam JBCHM, Portolano B, Misztal I (2005) Effect of heat stress on production of Mediterranean dairy sheep. J Dairy Sci 88(5):1855–1864

    Article  CAS  PubMed  Google Scholar 

  • Fontanesi L, Dall’Olio S, Beretti F, Portolano B, Russo V (2011) Coat colours in the Massese sheep breed are associated with mutations in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes. Animal 5(01):8–17

    Article  CAS  PubMed  Google Scholar 

  • Gaughan JB (2012) Basic principles involved in adaption of livestock to climate change in: environmental stress and amelioration proteins and immune system. J Leukoc Biol 85(6):905–910

    Google Scholar 

  • Gaughan J, Cawdell-Smith AJ (2015) Impact of climate change on livestock production and reproduction. In: Climate change impact on livestock: adaptation and mitigation. Springer, New Delhi, pp 51–60

    Chapter  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM, Lisle A (2008) A new heat load index for feedlot cattle. J Anim Sci 86:226–234

    Article  CAS  PubMed  Google Scholar 

  • Gratten J, Beraldi D, Lowder BV, McRae AF, Visscher PM, Pemberton JM, Slate J (2007) Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep. Proc R Soc Lond B Biol Sci 274(1610):619–626

    Article  CAS  Google Scholar 

  • Gregory NG (2010) How climatic changes could affect meat quality. Food Res Int 43(7):1866–1873

    Article  Google Scholar 

  • Hahn GL (1985) Management and housing of farm animals in hot environments. In: Yousef MK (ed) Stress physiology in livestock No. II. CRC Press Inc., Boca Raton, pp 151–174

    Google Scholar 

  • Hahn GL, Mader TL, Eigenberg RA (2003) Perspective on development of thermal indices for animal studies and management. EAAP Technic Ser 7:31–44

    Google Scholar 

  • Hall MB (2009) Heat stress alters Ruminal fermentation and Digesta characteristics, and behavior in lactating dairy cattle. In: Chilliard Y, Glasser F, Faulconnier Y, Bocquier F, Veissier I, Doreau M (eds) Proceeding of 11th international symposium on ruminant physiology. Wageningen Academic Publication, Wageningen, 204 p

    Google Scholar 

  • Hammond KJ, Burke JL, Koolaard JP, Muetzel S, Pinares-Patiño CS, Waghorn GC (2013) Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim Feed Sci Technol 179(1):121–132

    Article  CAS  Google Scholar 

  • Harle KJ, Howden SM, Hunt LP, Dunlop M (2007) The potential impact of climate change on the Australian wool industry by 2030. Agric Syst 93(1):61–89

    Article  Google Scholar 

  • Hart KJ, Martin PG, Foley PA, Kenny DA, Boland TM (2009) Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle. J Anim Sci 87(10):3342–3350

    Article  CAS  PubMed  Google Scholar 

  • Hassanin SH, Abdalla EB, Kotby EA, Abd-Elaziz AMS, El-Fouly MA (1996) Efficiency of asbestos shading for growth of Barki rams during hot summer. Small Rumin Res 20:199–203

    Article  Google Scholar 

  • Hatfield J, Boote K, Fay P, Hahn LC, Izaurralde BA, Kimball T, Mader J, Morgan D, Ort W, Polley A, Thomson WD (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, p 362

    Google Scholar 

  • Hinch GN, Lynch JJ (Undated) Comfortable quarters for sheep and goats. Department of Animal Science, University of New England, Armidale, Australia

    Google Scholar 

  • Hough D, Swart P, Cloete S (2013) Exploration of the hypothalamic-pituitary-adrenal axis to improve animal welfare by means of genetic selection: lessons from the South African Merino. Animals 3(2):442–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Howden MS, Ash A, Barlow S, Booth T, Charles S, Cechet B, Crimp S, Gifford R, Hennessy K, Jones R, Kirschbaum M (2003) An overview of the adaptive capacity of the Australian agricultural sector to climate change: options, costs and benefits, Australian Greenhouse Office

    Google Scholar 

  • Indu S, Sejian V, Naqvi SMK (2014) Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semi-arid tropical environment. Anim Prod Sci 55(6):766–776

    Article  CAS  Google Scholar 

  • Indu S, Sejian V, Kumar D, Pareek A, Naqvi SMK (2015) Ideal proportion of roughage and concentrate required for Malpura ewes to adapt and reproduce under semi-arid tropical environment. Trop Anim Health Prod 47(8):1487–1495

    Article  PubMed  Google Scholar 

  • Iniguez L (2005) Characterization of small ruminant breeds in West Asia and North Africa, vol 1. ICARDA, Aleppo

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jaber L, Chedi M, Hamadeh S (2013) Water stress in small ruminants. In Akinci S (ed) Responses of organisms to water stress, INTECH open science. pp 115–149. http://dx.doi.org/10.5772/53584

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77(1):59–91

    Article  Google Scholar 

  • Kalyan De, Kumar D, Singh AK, Kumar K, Sahoo A, Naqvi SMK (2015) Resilience of Malpura ewes on water restriction and rehydrationduring summer under semi-arid tropical climatic conditions. Small Rumin Res 133:123–127

    Article  Google Scholar 

  • Kandemir C, Kosum N, Taskin T (2013) Effects of heat stress on physiological traits in sheep. Maced J Anim Sci 3:25–29

    Google Scholar 

  • Karim SA, Rai AK, More T, Singh M (1985) Responses of native and half-breed sheep watered on alternate day during summer in semi-arid region. Indian J Anim Health 24:109–111

    Google Scholar 

  • Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF (2016) Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3):255–264

    Article  CAS  PubMed  Google Scholar 

  • Kosgey IS, Okeyo AM (2007) Genetic improvement of small ruminants in low-input, smallholder production systems: technical and infrastructural issues. Small Rumin Res 70(1):76–88

    Article  Google Scholar 

  • Kristjanson P, Waters-Bayer A, Johnson N, Tipilda A, Njuki J, Baltenweck I, Grace D, MacMillan S (2014) Livestock and women’s livelihoods. In: Gender in agriculture. Springer, Dordrecht, pp 209–233

    Chapter  Google Scholar 

  • Lassey KR (2007) Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle. Agric For Meteorol 142:120–132

    Article  Google Scholar 

  • Liew PK, Zulkifli I, Hair-Bejo M, Omar AR, Israf DA (2003) Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poult Sci 82(12):1879–1885

    Article  CAS  PubMed  Google Scholar 

  • Liu HW, Cao Y, Zhou DW (2012) Effects of shade on welfare and meat quality of grazing sheep under high ambient temperature. J Anim Sci 90(13):4764–4770

    Article  CAS  PubMed  Google Scholar 

  • Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35(5):429–435

    Article  PubMed  Google Scholar 

  • Mader TL, Davis MS (2004) Effect of management strategies on reducing heat stress of feedlot cattle: feed and water intake. J Anim Sci 82(10):3077–3087

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud GB, Abdel-Raheem SM, Hussein HA (2013) Effect of combination of vitamin E and selenium injections on reproductive performance and blood parameters of Ossimi rams. Small Rumin Res 113(1):103–108

    Article  Google Scholar 

  • Marai IFM, El-Darawany AA, Abou-Fandoud EI, Abdel-Hafez MAM (2006) Serum blood components during pre-oestrus, oestru and pregnancy phases in Egyptian Suffolk as affected by heat stress, under the conditions of Egypt. Egyptian J Sheep Goats Desert Anim Sci 1(1):47–62

    Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep—a review. Small Rumin Res 71(1):1–12

    Article  Google Scholar 

  • Maurya VP, Sejian V, Kumar D, Naqvi SMK (2010) Effect of induced body condition score differences on sexual behavior, scrotal measurements, semen attributes, and endocrine responses in Malpura rams under hot semi-arid environment. J Anim Physiol Anim Nutr 94:e308–e317

    Article  CAS  Google Scholar 

  • Maurya VP, Sejian V, Naqvi SMK (2012) Influence of simulated body condition score on growth, physiological responses and blood metabolites of native Malpura ram. Indian J Anim Sci 82(11):90–93

    Google Scholar 

  • McManus C, Paluda GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41:95–101

    Article  PubMed  Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (eds) (2014) Climate change impacts in the United States: the third National Climate Assessment. U.S. Global Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2

  • Mittal JP, Ghosh PK (1979) Effect of shearing on certain physiological responses of corriedale rams under arid conditions during summer. Indian J Anim Sci 49:152–154

    Google Scholar 

  • More T, Sahni KL (1975) The blood potassium level, certain haematological and wool characteristics of Rambouillet sheep under semi-arid conditions. Indian Vet J 52:181–185

    CAS  Google Scholar 

  • Naas IA, Moura DJ (2006) Animal housing in hot climate: a multidisciplinary view. Published by Research Centre Bygholm, Danish Institute of Agricultural Sciences, Schüttesvej 17, 8700, Horsens, Denmark

    Google Scholar 

  • Naqvi SMK, Sejian V (2011) Global climate change: role of livestock. Asian J Agri Sci 3(1):19–25

    Google Scholar 

  • Naqvi SMK, Sejian V, Karim SA (2013) Effect of feed flushing during summer season on growth, reproductive performance and blood metabolites in Malpura ewes under semi-arid tropical environment. Trop Anim Health Prod 45:143–148

    Article  PubMed  Google Scholar 

  • Naqvi SMK, Kumar D, Kalyan D, Sejian V (2015) Climate change and water availability for livestock: impact on both quality and quantity. In: Sejian V, Gaughan J, Baumgard L, Prasad CS (eds) Climate change impact on livestock: adaptation and mitigation. Springer/GMbH Publisher, New Delhi, pp 81–96

    Chapter  Google Scholar 

  • Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U (2010) Effects of climate changes on animal production and sustainability of livestock systems. Livest Sci 130(1):57–69

    Article  Google Scholar 

  • Nefzaoui A, Ben Salem H (2002) Forage, fodder, and animal nutrition. In: Nobel PS (ed) . University of California Press, Berkeley, pp 190–210

    Google Scholar 

  • Nonaka I, Takusari N, Tajima K, Suzuki Higuchi T, Kurihara KM (2008) Effects of high environmental temperatures on physiological and nutritional status of pre pubertal Holstein heifers. Livest Sci 113:14–23

    Article  Google Scholar 

  • Pinares-Patiño CS, Lassey KR, Martin RJ, Molano G, Fernandez M, MacLean S, Sandoval E, Luo D, Clark H (2011) Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Anim Feed Sci Technol 2011(166–167):201–209

    Article  CAS  Google Scholar 

  • Pragna P, Archana PR, Aleena J, Sejian V, Krishnan G, Bagath M, Manimaran A, Beena V, Kurien EK, Varma G and Bhatta R (2017) Heat Stress and Dairy Cow: Impact on Both Milk Yield and Composition. Int J Dairy Sci 12(1): 1–11

    Google Scholar 

  • Rana MS, Hashem MA, Akhter S, Habibullah M, Islam MH, Biswas RC (2014) Effect of heat stress on carcass and meat quality of indigenous sheep of Bangladesh. Bangladesh J Anim Sci 43(2):147–153

    Article  Google Scholar 

  • Romero RD, Pardo AM, Montaldo HH, Rodríguez AD, Cerón JH (2013) Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress. Trop Anim Health Prod 45(8):1691–1696

    Article  PubMed  Google Scholar 

  • Royo LJ, Alvarez I, Arranz JJ, Fernández I, Rodríguez A, Pérez-Pardal L, Goyache F (2008) Differences in the expression of the ASIP gene are involved in the recessive black coat colour pattern in sheep: evidence from the rare Xalda sheep breed. Anim Genet 39(3):290–293

    Article  CAS  PubMed  Google Scholar 

  • Russel A (1991) Body condition scoring of sheep. In: Boden E (ed) Sheep and goat practice. Bailliere Tindall, Philadelphia, p 3

    Google Scholar 

  • Salak-Johnson JL, McGlone JJ (2007) Making sense of apparently conflicting data: stress and immunity in swine and cattle. J Anim Sci 85(13_suppl):E81–E88

    Article  CAS  PubMed  Google Scholar 

  • Salem HB, Smith T (2008) Feeding strategies to increase small ruminant production in dry environments. Small Rumin Res 77(2):174–194

    Article  Google Scholar 

  • Salles MSV, Zanetti MA, Salles FA, Titto EAL, Conti RMC (2010) Changes in ruminal fermentation and mineral serum level in animals kept in high temperature environments. R Bras Zootec 39(4):883–890

    Article  Google Scholar 

  • Santra A, Karim SA (2002) Influence of ciliate protozoa on biochemical changes and hydrolytic enzyme profile in the rumen ecosystem. J Appl Microbiol 92(5):801–811

    Article  CAS  PubMed  Google Scholar 

  • Saro C, Ranilla MJ, Tejido ML, Carro MD (2014) Influence of forage type in the diet of sheep on rumen microbiota and fermentation characteristics. Livest Sci 160:52–59

    Article  Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Indian J Small Rumin 19(1):1–21

    Google Scholar 

  • Sejian V, Maurya VP, Naqvi SM (2010a) Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. Int J Biometeorol 54(6):653–661

    Article  PubMed  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK, Kumar D, Joshi A (2010b) Effect of induced body condition score differences on physiological response, productive and reproductive performance of Malpura ewes kept in a hot, semi-arid environment. J Anim Physiol Anim Nutr 94(2):154–161

    Article  CAS  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2011a) Effect of thermal, nutritional and combined (thermal and nutritional) stresses on growth and reproductive performance of Malpura ewes under semi-arid tropical environment. J Anim Physiol Anim Nutr 95:252–258

    Article  CAS  Google Scholar 

  • Sejian V, Lal R, Lakritz J, Ezeji T (2011b) Measurement and prediction of enteric methane emission. Int J Biometeorol 55:1–16

    Article  PubMed  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2012a) Effect of walking stress on growth, physiological adaptability and endocrine responses in Malpura ewes under semi-arid tropical environment. Int J Biometeorol 56:243–252

    Article  PubMed  Google Scholar 

  • Sejian V, Maurya VP, Kumar K, Naqvi SMK (2012b) Effect of multiple stresses (thermal, nutritional and walking stress) on the reproductive performance of Malpura ewes. Veter Med Int. doi:10.1155/2012/471760

    Google Scholar 

  • Sejian V, Maurya VP, Kumar K, Naqvi SMK (2013a) Effect of multiple stresses on growth and adaptive capability of Malpura ewes under semi-arid tropical environment. Trop Anim Health Prod 45(1):107–116

    Article  PubMed  Google Scholar 

  • Sejian V, Indu S, Naqvi SMK (2013b) Impact of short term exposure to different environmental temperature on the blood biochemical and endocrine responses of Malpura ewes under semi-arid tropical environment. Indian J Anim Sci 83(11):1155–1160

    CAS  Google Scholar 

  • Sejian V, Bahadur S, Naqvi SMK (2014a) Effect of nutritional restriction on growth, adaptation physiology and estrous responses in Malpura ewes. Anim Biol 64:189–205

    Article  Google Scholar 

  • Sejian V, Singh AK, Sahoo A, Naqvi SMK (2014b) Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J Anim Physiol Anim Nutr 98:72–83

    Article  CAS  Google Scholar 

  • Sejian V, Maurya VP, Prince LLL, Kumar D, Naqvi SMK (2015) Effect of FecB status on the allometric measurements and reproductive performance of Garole X Malpura ewes under hot semi-arid environment. Trop Anim Health Prod 47(6):1089–1093

    Article  PubMed  Google Scholar 

  • Sejian V, Kumar D, Gaughan JB, Naqvi SMK (2016) Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. J Veterin Behav Clin Appl Res. doi:10.1016/j.jveb.2016.10.009

    Google Scholar 

  • Shaji S, Sejian V, Bagath M, Manjunathareddy GB, Kurien EK, Varma G, Bhatta R (2016a) Summer season related heat and nutritional stresses on the adaptive capability of goats based on blood biochemical response and hepatic HSP70 gene expression. Biol Rhyth Res. doi:10.1080/09291016.2016.1232340

    Google Scholar 

  • Shaji S, Sejian V, Bagath M, Mech A, David ICG, Kurien EK, Varma G, Bhatta R (2016b) Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors. Int J Biometeorol 60:1311–1323

    Article  Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Indian J Anim Sci 83(10):998–1008

    Google Scholar 

  • Shini S, Huff GR, Shini A, Kaiser P (2010) Understanding stress-induced immunosuppression: exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult Sci 89:841–851

    Article  CAS  PubMed  Google Scholar 

  • Silva TPD, Torreao JNC, Marques CAT, Araujo MJ, Bezerra LR, Dhanasekaran DK, Sejian V (2016) Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment. J Therm Biol 59:39–46

    Article  Google Scholar 

  • Singh M (1980) Problems of adaptation by sheep to hot arid conditions. Ann Arid Zone 19:301–306

    Google Scholar 

  • Singh SK, Meena HR, Kolekar DV, Singh YP (2012) Climate change impacts on livestock and adaptation strategies to sustain livestock production. J Vet Adv 2(7):407–412

    Google Scholar 

  • Smith DL, Smith T, Rude BJ, Ward SH (2013) Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J Dairy Sci 96(5):3028–3033

    Article  CAS  PubMed  Google Scholar 

  • Sophia I, Sejian V, Bagath M, Bhatta R (2016a) Impact of heat stress on immune responses of livestock: a review. J Trop Agric Sci 39(4):459–482

    Google Scholar 

  • Sophia I, Sejian V, Bagath M, Bhatta R (2016b) Quantitative expression of hepatic toll-like receptor 1–10 mRNA in Osmanabadi goats during different climatic stresses. Small Rumin Res 141:11–16

    Article  Google Scholar 

  • Sophia I, Sejian V, Bagath M, Bhatta R (2016c) Influence of different environmental stresses on various spleen toll like receptor genes expression in Osmanabadi goats. Asian J Biol Sci. doi:10.3923/ajbs.2016

    Google Scholar 

  • Stockman CA (2006) The physiological and behavioural responses of sheep exposed to heat load within intensive sheep industries, Thesis, Murdoch University, Western Australia.

    Google Scholar 

  • Storm IMLD, Louise A, Hellwing F, Nielsen NI, Madsen J (2012) Methods for measuring and estimating methane emission from ruminants. Animals 2:160–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajima K, Nonaka I, Higuchi K, Takusari N, Kurihara M, Takenaka A, Aminov RI (2007) Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 13(2):57–64

    Article  PubMed  Google Scholar 

  • Tankson JD, Vizzier-Thaxton Y, Thaxton JP, May JD, Cameron JA (2001) Stress and nutritional quality of broilers. Poult Sci 80(9):1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock health and diseases. Int J Livest Res 2(3):15–24

    Google Scholar 

  • Uyeno Y, Sekiguchi Y, Tajima K, Takenaka A, Kurihara M, Kamagata Y (2010) An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 16(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Van Heelsum AM, Lewis RM, Davies MH, Haresign W (2003) Growth and carcass characteristics in wether lambs of a crossbred dam line, University of Nebraska - Lincoln

    Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JS (2012) Climate change and food systems. Annu Rev Environ Resour 37(1):195

    Article  Google Scholar 

  • Villeneuve L, Méthot H, Cinq-Mars D, Bergeron R (2009) Effect of individual or paired housing during post-weaning on feed intake, growth rate and behaviour of lambs. Small Rumin Res 85(2):99–104

    Article  Google Scholar 

  • Wang MZ, Wang HR, Li GX, Zhang J (2008) Effects of limiting amino acids on the rumen 331 fermentation and microbial community in vitro. Agric Sci China 7:1524–1531

    Article  Google Scholar 

  • Welc SS, Clanton TL, Dineen SM, Leon LR (2013) Heat stroke activates a stress-induced cytokine response in skeletal muscle. J Appl Phys 115(8):1126–1137

    CAS  Google Scholar 

  • West JW, Yullinix BO, Sandifer G (1991) Changing dietary electrolyte balance for dairy cows in cool and hot environments. J Dairy Sci 74:1662–1674

    Article  CAS  PubMed  Google Scholar 

  • West JW, Mandebvu P, Hill GM, Gates RN (1998) Intake, milk yield, and digestion by dairy cows fed diets with increasing fiber content from bermuda grass hay or silage. J Dairy Sci 81(6):1599–1607

    Article  CAS  PubMed  Google Scholar 

  • West JW, Mullinix BG, Bernard JK (2003) Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J Dairy Sci 86:232–242

    Article  CAS  PubMed  Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Article  CAS  PubMed  Google Scholar 

  • Wina E, Muetzel S, Becker K (2006) The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. J Appl Microbiol 100(1):114–122

    Article  CAS  PubMed  Google Scholar 

  • Wingfield AS, Kitaysky JC (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormone. Integr Comp Biol 42:600–609

    Article  CAS  PubMed  Google Scholar 

  • Yadav B, Singh G, Verma AK, Dutta N, Sejian V (2013) Impact of heat stress on rumen functions. Vet World 6(12):992–996

    Article  Google Scholar 

  • Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, Ferris CP, Kilpatrick DJ (2010) Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci 93(6):2630–2638

    Article  CAS  PubMed  Google Scholar 

  • Yatoo MI, Kumar P, Dimri U, Sharma MC (2012) Effects of climate change on animal in livestock production. Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds). Springer/GMbH Publisher, Heidelberg, pp 245–261

    Google Scholar 

  • Zhao YG, O’Connell NE, Yan T (2016) Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass using data measured in indirect open-circuit respiration chambers. J Anim Sci 94(6):2425–2435

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, An H, Xu H, Liu S, Cao X (2005) Heat shock up-regulates expression of toll-like receptor-2 and toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology 114(4):522–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimbelman RB, Muumba J, Hernandez LH, Wheelock JB, Shwartz G, O’Brien MD, Baumgard LH, Collier RJ (2007) Effect of encapsulated niacin on resistance to acute thermal stress in lactating Holstein cows. J Dairy Sci 90(Suppl 1):230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasamy Sejian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sejian, V., Bhatta, R., Gaughan, J., Malik, P.K., Naqvi, S.M.K., Lal, R. (2017). Adapting Sheep Production to Climate Change. In: Sejian, V., Bhatta, R., Gaughan, J., Malik, P., Naqvi, S., Lal, R. (eds) Sheep Production Adapting to Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-10-4714-5_1

Download citation

Publish with us

Policies and ethics