Skip to main content

Nanomaterial-Based Biosensors in Agriculture Application and Accessibility in Rural Smallholding Farms: Food Security

  • Chapter
  • First Online:
Nanotechnology

Abstract

In the absence of inexpensive screening tools, food contamination poses immense threat to food safety and security and ultimately inclines burden on the public health, particularly for the populace in low- and middle-income countries, e.g. sub-Sahara Africa (SSA) countries. Current traditional methods for detection of contaminants in food and to ensure food quality and safety are associated with time-consuming procedures that are expensive and not accessible to those in rural areas. This chapter reviews the latest development and highlights the impact of various nanomaterials used during constructing biological sensors for screening each of these above food contaminants, in detail. The presence of nanomaterials is promising to offer device that is affordable, highly sensitive, specific and user-friendly. This chapter also highlights the accessibility of this technology, particularly to those in the rural and smallholder farmers. Furthermore, also try to address the potential contributions that nanotechnology can have in food safety and security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Váradi M, Szendro I (2007) Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A. Biosens Bioelectron 22(6):797–802

    Article  CAS  PubMed  Google Scholar 

  • Afonso AS, Perez-Lopez FRC, Mattoso LHC, Hernandez M (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40(1):121–126

    Article  CAS  PubMed  Google Scholar 

  • Akbas M, Ozdemir M (2006) Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. J Sci Food Agric 86(13):2099–2104

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol (in press)

    Google Scholar 

  • Bonel L, Vidal J, Duato P, Castillo J (2010) Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen. Anal Methods 2:335–341

    Article  CAS  Google Scholar 

  • Courvalin P (2008) Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 264:4–16

    Article  CAS  PubMed  Google Scholar 

  • Cozzini P, Ingletto G, Singh R, Asta CD (2008) Mycotoxin detection plays “cops and robbers”: Cyclodextrin chemosensors as specialized police? Int J Mol Sci 9(12):2474–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldin TAS, Elshoky HA, Ali MA (2014) Nanobiosensor based on gold nanoparticles probe for aflatoxin B1 detection in food. Int J Curr Microbiol App Sci 3(8):219–230

    CAS  Google Scholar 

  • FAO (1996) Rome Declaration on World Food Security and World Food Summit Plan of Action. World Food Summit 13–17 November 1996

    Google Scholar 

  • FAO (2002) The State of Food Insecurity in the World 2001. Rome

    Google Scholar 

  • Gregory PJ, Ingram JSI, Brklacich (2005) Climate change and food security. Philos Trans R Soc B 360(1463):2139–2148

    Article  CAS  Google Scholar 

  • Guan H, Zhang F, Yu J, Chi D (2012) The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposites film for detection of organophosphates pesticides. Food Res Int 49(1):15–21

    Article  CAS  Google Scholar 

  • Haddaoui M, Raouafi N (2015) Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sensors Actuators B Chem 219:171–178

    Article  CAS  Google Scholar 

  • Hogue A, White P, Petter JG, Schlosser N, Gast R, Ebel E et al (1997) Epidemiology and control of egg-associated with Salmonella enteritidis in the United States of America. Rev Sci Tech 16:542–553

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Bai X, Xing C, Gu N, Zhang B, Tang J, Bai X, Xing C, Gu N, Zhang B et al (2013) Aptamer-based cantilever array sensors for oxytetracycline detection. Anal Chem 85:2010–2014

    Article  CAS  PubMed  Google Scholar 

  • Huet A, Fodey T, Haughey SA, Weigel S, Elliott C, Delahaut P (2010) Advances in biosensor-based analysis for antimicrobial residues in food. Trends Anal Chem 29(11):1281–1294

    Article  CAS  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167(2):101–134

    Article  CAS  PubMed  Google Scholar 

  • Idowu F, Junaid K, Paul A, Gabriel O, Paul A, Sati N, Maryam M, Jarlath U (2010) Antimicrobial screening of commercial eggs and determination of tetracycline residue using two microbiological methods. Int J Poult Sci 9(10):959–962

    Article  Google Scholar 

  • Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24(1):15–28

    Article  Google Scholar 

  • Kaushnik A, Solanski P, Ansari A, Ahmad S, Malhorta B (2008) Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-a. Electrochem Commun 10(9):1364–1368

    Article  Google Scholar 

  • Khanna VK (2008) New-generation nano-engineered bio-sensors, enabling nanotechnologies and nanomaterials. Sens Rev 28(1):39–45

    Article  Google Scholar 

  • Kiaya V (2014) Post-harvest losses and strategies to reduce them. Technical Paper on Postharvest Losses, Action Contre la Faim (ACF).

    Google Scholar 

  • Kim G, Park SB, Moon J, Lee S (2013) Detection of pathogenic Salmonella with nanobiosensors. Anal Methods 5:5717–5723

    Article  CAS  Google Scholar 

  • Koedrith P, Thasiphu T, Tuitemwong K, Boonprasert R, Tuitemwong P (2014) Recent advances in potential nanoparticles and nanotechnology for sensing foodborne pathogens and their toxin in food and crops: current technologies and limitations. Sensor and Materials 26(10):711–736

    Google Scholar 

  • Kumar S, Dilbaghi N, Barnela M, Bhanjana G, Kumar R (2012) Biosensors as novel platforms for detection of food pathogens and allergens. BioNanoSci 2(4):196–217

    Article  Google Scholar 

  • Landers TF, Cohen B, Wittum TE, Larson EL (2012) A review of antibiotic use in food animals: perspective, policy and potential. Public Health Reports January–February 127:1–22

    Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:122–129

    Article  Google Scholar 

  • Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41

    Article  Google Scholar 

  • Lin X, Guo X (2016) Advances in biosensors, chemosensors and assays for the determination of Fusarium mycotoxins. Toxins 8(6):161

    Article  PubMed Central  Google Scholar 

  • Madhuri S, Ajoy KC, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Maragos CM, Thompson VS (1999) Fiber-optic immunosensor for mycotoxins. Nat Toxins 7(6):371–376

    Google Scholar 

  • Masikini M, Mailu SN, Tsegaye A et al (2015) A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Sensors 15:529–546

    Article  Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(3):93–106

    Article  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92

    Article  CAS  PubMed  Google Scholar 

  • Mead GC (2004) Microbiological quality of poultry meat: a review. Braz J Poult Sci 6(3):135–142

    Google Scholar 

  • Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry-a review. Biosensors 4:472–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Norouzi P, Pirali-Hamedani M, Ganjal MR, Faridbod F (2010) A novel acetylcholinesterase biosensor for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446

    CAS  Google Scholar 

  • Nowak B, Müffling T, Chaunchom S, Hartung J (2007) Salmonella contamination in pigs at slaughter and on the farm: a field study using an antibody ELISA test and a PCR technique. Int J Food Microbiol 115(3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Otles S, Yalcin B (2012) Review on the application of nanobiosensors in food analysis. Acta Sci Pol Technol Aliment 11(1):7–18

    CAS  PubMed  Google Scholar 

  • Owino J, Arotiba O, Hendricks N, Songa E, Jahed N, Waryo TT, Ngece R, Baker P, Iwuoha E (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 8(12):8262–8274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddle B (1996) Biosensors for chemical and biological agents of defence interest. Biosens Bioelectron 11(11):1079–1113

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10(2):124–127

    Article  CAS  Google Scholar 

  • Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M (1) in milk with focus on matrix interference. Biosens Bioelectron 24(8):2452–2457

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 77(1):138–143

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomaterials and Nanobiotechnology 3:315–324

    Article  CAS  Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400

    Article  Google Scholar 

  • Song KM, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem 402(6):2153–2161

    Google Scholar 

  • Song Y, Chen J, Wang LA (2015) Simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J hazardous 304:103–109

    Article  Google Scholar 

  • Songa EA, Somerset S, Waryo T, Baker PG, Iwuoha EI (2009a) Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl Chem 81(1):123

    Article  CAS  Google Scholar 

  • Songa EA, Waryo T, Jahed N, Baker PGL, Kgarebe B, Iwuoha EI (2009b) Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 21(3–5):671–674

    Article  CAS  Google Scholar 

  • Songa EA, Arotiba OA, Owino JH, Jahed N, Baker PG, Iwuoha EI (2009c) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Article  Google Scholar 

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Turan E, Sahin F (2016) Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors Actuators B Chem 227:668–676

    Article  CAS  Google Scholar 

  • Ventura M, Gomez A, Anaya I, Diaz J, Broto F, Agut M, Comellas L (2004) Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography-tandem mass spectrometry. J Chromatography A 1048(1):25–29

    CAS  Google Scholar 

  • Vimala V, Clarke SK, Urvinder Kaur S (2016) Pesticides detection using acetylcholinesterase nanobiosensor. Biosens J 5:1–4

    Google Scholar 

  • Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis. Pol J Food Nutrition Sci 58(2):157–164

    CAS  Google Scholar 

  • Viswanathan S, Wu L, Huang M, Ho J (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78(4):1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Vo-Dinh T (2005) Optical nanosensors for detecting proteins and biomarkers in individual living cells. Methods Mol Biol 300:383–402

    CAS  PubMed  Google Scholar 

  • Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11):1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Alocijia EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Tang L, Huang L, Han Z, Wang J, Pan H (2014) A low detection limit penicillin biosensor based on single graphene nanosheets preadsorbed with hematein-ionic liquids-penicillinase. Mater Sci Eng C Mater Biol Appl 1(39):92–99

    Article  Google Scholar 

  • Wu S, Zhang H, Duan S, Fang CC, Dai WZ (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604

    Article  CAS  Google Scholar 

  • Xu S, Han X (2004) A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly (styrene-coacrylic acid) nanospheres. Biosens Bioelectron 19(9):1117–1120

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Shan L, Tian Z, Zheng Y, Shi L et al (2008) Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue. Chin Chem Lett 19:592–594

    Article  CAS  Google Scholar 

  • Zhao G, Wang H, Liu G (2015) Advances in biosensor-based instruments for pesticide residues rapid detection. Int J Electrochem Sci 10:9790–9807

    CAS  Google Scholar 

  • Zheng Z, Zhoub Y, Li X, Liua S, Tangb Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085

    Article  CAS  PubMed  Google Scholar 

  • Zhilong G, Zhujun Z (1997) Cyclodextrin-based optosensor for determination of tryptophan. Microchim Acta 126(3):325–328

    Article  Google Scholar 

  • Zimmerli B, Dick R (1996) Ochratoxin A in table wine and grape juice: occurrence and risk assessment. Food Addit Contam 13(6):655–668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mufamadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mufamadi, M.S., Sekhejane, P.R. (2017). Nanomaterial-Based Biosensors in Agriculture Application and Accessibility in Rural Smallholding Farms: Food Security. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_12

Download citation

Publish with us

Policies and ethics