Skip to main content

Remediation and Management of Polluted Sites

  • Chapter
  • First Online:
Soil Pollution - An Emerging Threat to Agriculture

Abstract

Soils perform several important ecosystem functions and therefore polluted land requires remediation and appropriate management for restoration of its life sustaining functions. Several technologies have been developed for their remediation based on clean-up, detoxification and risk minimization approaches. All of these technologies have both advantages and disadvantages in respect of the extent of applicability, side-effects on other components of environment, cost & ease of adoption, speed & effectiveness of remediation etc. While removal of contaminants and the risk minimization are the major approaches for heavy metal polluted soil, degradation to non toxic or less toxic compounds is the most common approach for soils polluted with organic pollutants. Plants, microorganisms, nanotechnology have also been used for remediation of polluted sites with varying degree of success. Waste products from agriculture, industries, city etc. have also exhibited their potential in minimizing risk from pollutants. Growers may minimize risks from polluted land through modification of soil, crop and nutrient managements. This chapter also discusses examples of a remediation approaches followed in case of different polluted sites worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafid R, Houot S, Barriuso E (2000) Dependence of atrazine degradationon C and N availability in adapted and non-adapted soils. Soil Biol Biochem 32:389–401

    Article  CAS  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  Google Scholar 

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  Google Scholar 

  • Adegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Resour Ind 12:8–24

    Article  Google Scholar 

  • Ahmad F, Iqbal S, Anwar S et al (2012) Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater 237–238:110–115

    Article  CAS  Google Scholar 

  • Aitken MD, Stringfellow WT, Nagel RD et al (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752

    Article  CAS  Google Scholar 

  • Alagić SČ, Šerbula SS, Tošić SB et al (2013) Bioaccumulation of arsenic and cadmium in birch and lime from the Bor Region. Arch Environ Contam Toxicol 65(4):671–682

    Article  CAS  Google Scholar 

  • Al-Awadhi N, Al-Daher R, El-Nawawy A, Balba MT (1996) Bioremediation of oil-contaminated soil in Kuwait. I. Landfarming to remediate oil-contaminated soil. J Soil Contam 5:243–260

    Article  CAS  Google Scholar 

  • Alexakhin RM (1993) Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident. Sci Total Environ 137:9–20

    Article  CAS  Google Scholar 

  • Allen CCR, Boyd DR, Hempenstall F et al (1999) Contrasting effects of nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65:1335–1339

    CAS  Google Scholar 

  • Anderson AM, Johnson AH, Siccama TG (1980) Levels of lead copper, and zinc in the forest floor of the northeastern United Stated. J Environ Qual 9:293–296

    Article  Google Scholar 

  • Angelova V, Ivanova R et al (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19:197–205

    Article  CAS  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G et al (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated waste using Composting strategies. Crit Rev Environ Sci Technol 34:249–289

    Article  CAS  Google Scholar 

  • Ayed L, Chaieb K, Cheref A, Bakhrouf A (2010) Biodegradation and decolorization of triphenyl methane dyes by Staphylococcus epidermidis. Desalination 260:137–146

    Article  CAS  Google Scholar 

  • Baczynski TP, Grotenhuis T, Knipscheer P (2004) The dechlorination of cyclodiene pesticides by methanogenic granular sludge. Chemosphere 55:653–659

    Article  CAS  Google Scholar 

  • Bergaya F, Barrault J (1990) Mixed Al-Fe pillard laponites preparation, characterization and their catalytic properties in syngas conversion. In: Mitchell LV (ed) Pillard layered structures. current trends and applications. Elsevier Applied Science, London, pp 167–184

    Google Scholar 

  • Bergmann F, Selesi D, Weinmaier T et al (2011) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Delta proteobacterium N47. Environ Microbiol 13:1125–1137

    Article  CAS  Google Scholar 

  • Bezalel Y, Hadar P, Fu P et al (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2554–2559

    CAS  Google Scholar 

  • Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321

    Article  CAS  Google Scholar 

  • Bhatt P, Suresh Kumar M, Chakrabarti T (2007) Assessment of bioremediation possibilities of technical grade hexachlorocyclohexane (tech-HCH) contaminated soils. J Hazard Mat 143:349–353

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31(1):9–18

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R et al (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Boldrin B, Andreas T, Fritzche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium spp. Appl Environ Microbiol 59:1927–1930

    CAS  Google Scholar 

  • Boonchan S (1998) Biodegradation of polycyclic aromatic hydrocarbons: application of fungal–bacterial coculture sand surfactants. Dissertation, Victoria University of Technology, Melbourne Victoria

    Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G et al (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  • Broadley MR, Willey NJ et al (1999) A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ Pollut 106:341–349

    Article  CAS  Google Scholar 

  • Burlakovs J, Klavins M, Karklina A (2012) Remediation of soil contamination with heavy metals by using zeolite and humic acid additives. Latv J Chem 4:336–341

    Google Scholar 

  • Byss M, Elhottov´ac D, Tˇr´ıskab J, Baldriand P (2008) Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere 73:1518–1523

    Article  CAS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C et al (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13:241–268

    Article  Google Scholar 

  • Casillas RP, Crow SA, Heinze TM et al (1996) Initial oxidation and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215

    Article  CAS  Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbon in aquatic environment. CRC Press Inc., Boca Raton, pp 41–68

    Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579

    Article  CAS  Google Scholar 

  • Chauhan A, Fazlurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR et al (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Chlopecka A, Adriano DC (1996) Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ Sci Technol 30:3294–3303

    Article  CAS  Google Scholar 

  • Chlopecka A, Adriano DC (1997) Inactivation of metals in polluted soils using natural zeolite and apatite. In: Iskandar IK, Hardy SE, Chang AC, Pierzynski GM (eds) Proceeding of extended abstracts 4th international conference biogeochemistry of trace elements. Berkeley, USA, pp 415–416

    Google Scholar 

  • Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    CAS  Google Scholar 

  • CLAIRE (2007) Treatment of chromium contamination and chromium ore processing residue. Technical Bulletin TB14. Available at: http://www.claire.co.uk/component/phocadownload/category/17-technical-bulletins?download=55:technicalbulletin14. Accessed 17 Sept 2016

  • Collins PJ, Dobson ADW (1996) Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (coriolus) versicolor. Biotechnol Lett 18:801–804

    Article  CAS  Google Scholar 

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2006) Eisenia foetida increased removal of polycyclic aromatic hydrocarbons (PAHs) from soil. Environ Pollut 141:396–401

    Article  CAS  Google Scholar 

  • Cook LL, Inouye RS et al (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    Article  CAS  Google Scholar 

  • Coover MP, Sims RC (1987) The effect of temperature on polycyclic aromatic hydrocarbon persistence in an unacclimated agricultural soil. J Hazard Mater 4:69–82

    CAS  Google Scholar 

  • Correa PA, Lin L et al (2010) The Effects of Individual PCB Congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ Int 36:901–906

    Article  CAS  Google Scholar 

  • Coumar MV, Parihar RS, Dwivedi AK et al (2016a) Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. Bioresources 11:1585–1595

    CAS  Google Scholar 

  • Coumar MV, Parihar RS, Dwivedi AK et al (2016b) Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ Monit Assess 188:31–31

    Article  CAS  Google Scholar 

  • Da-Silva M, Cerniglia CE, Pothuluri JV et al (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidise polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    Article  CAS  Google Scholar 

  • Deng B, Hu S (2001) Reductive dechlorination of chlorinated solvents on zerovalent iron surfaces. In: Smith JA, Burns SE (eds) Physicochemical groundwater remediation. Kluwer Academic, New York, pp 139–159

    Google Scholar 

  • Derz K, Klinner U, Schupan I et al (2005) Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic hydrocarbon-degrading species. Int J Syst Evol Microbiol 54:2313–2317

    Article  CAS  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10:244–267

    Article  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  • du Plessis CA, Senior E, Hughes JC (1994) The physical-chemical approach to organic pollutant attenuation in soil. In: Hinchee R, Anderson DB, Blaine Metting F Jr., Sayles GD (eds) Applied biotechnology for site remediation. Second international symposium on In situ and on-site bioreclamation, San Diego, April 1993

    Google Scholar 

  • Düring R, Gath S (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where will we go? J Plant Nutr Soil Sci 165:544–556

    Article  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239–1245

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z et al (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.) Chemosphere 71:1593–1598

    Article  CAS  Google Scholar 

  • Farah JY, El-Gendy NS, Farahat LA (2007) Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. J Hazard Mater 148:402–408

    Article  CAS  Google Scholar 

  • Fesenko SV, Alexakhin RM, Balonov MI et al (2007) An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident. Sci Total Environ 383:1–24

    Article  CAS  Google Scholar 

  • Field RJ, Peel AJ (1971a) The metabolism and radial movement of growth regulators and herbicides in willow stems. New Phytol 70:743–749

    Article  CAS  Google Scholar 

  • Field RJ, Peel AJ (1971b) The movement of growth regulators and herbicides into the sieve elements of willow. New Phytol 70:997–1003

    Article  CAS  Google Scholar 

  • Field RJ, Peel AJ (1972) The longitudinal mobility of growth regulators and herbicides in sieve tubes of willow. New Phytol 71:249–254

    Article  CAS  Google Scholar 

  • Friesl W, Lombi E, Horak O, Wenzel WW (2003) Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J Plant Nutr Soil Sci 166:191–196

    Article  CAS  Google Scholar 

  • Fu G, Kan AT, Tomson M (1994) Adsorption and desorption hysteresis of PAHs in surface sediment. Environ Toxicol Chem 13:1559–1567

    Article  CAS  Google Scholar 

  • Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  Google Scholar 

  • Gao Y, Ling W, Wong MH (2006) Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere 63:1560–1567

    Article  CAS  Google Scholar 

  • Garau G, Castaldi P, Santona L et al (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:47–57

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG et al (1999) Use of plant roots for phytoremediation and molecular farming. PNAS 96:5973–5977

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG et al (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  Google Scholar 

  • Grossi G, Lichtig J et al (1998) PCDD/F, PCB, and PAH content of Brazilian compost. Chemosphere 37:2153–2160

    Article  CAS  Google Scholar 

  • Günther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33:203–215

    Article  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y et al (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    Article  CAS  Google Scholar 

  • Häggblom M, Valo RJ (1985) Bioremediation of chlorophenol wastes. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of Toxic Organic Chemicals. Wiley, New York, pp 389–434

    Google Scholar 

  • Halling SB, Sengelov G, Ingerslev F, Jensen LB (2003) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of 1,1-dichrolo-2,2-(4-chrolophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microb Ecol 31:249–253

    Article  CAS  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM (2004) Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ Prog 23:78–93

    Article  CAS  Google Scholar 

  • Higginson FR (1993) The composition of mineral soil, physico-chemical and ion exchange properties. In: Hazelton PA, Koppi AJ (eds) Soil Technology – Applied Soil Science. A course of lectures. 2nd edition. ASSSI NSW Branch and Dept. Agric. Chem. & Soil Science, University of Sydney. pp 39–59

    Google Scholar 

  • Hoffman DR, Okon JL, Sandrin TR (2005) Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation. Chemosphere 59:919–927

    Article  CAS  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Article  Google Scholar 

  • Hu J, Lo IM, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticle. Water Sci Technol 50:139–146

    CAS  Google Scholar 

  • Huang X, El-Alawi Y et al (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  Google Scholar 

  • Huang M, Zhu Y, Li Z et al (2016) Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. doi:10.1007/s11270-016-3068-8

    Google Scholar 

  • Hülster A, Muller JF, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Article  Google Scholar 

  • Huq SMI, Joardar JC et al (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24:305–316

    Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18:731–740

    Article  CAS  Google Scholar 

  • IAEA (2005) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the UN Chernobyl Forum Expert Group “Environment” (EGE). International Atomic Energy Agency, Vienna, p 246

    Google Scholar 

  • Indoria AK, Poonia SR (2006) Phytoextractability of lead from soil by some oilseed crops as affected by sewage sludge and farmyard manure. Arch Agron Soil Sci 52:667–677

    Article  CAS  Google Scholar 

  • Ishikawa S (2005) Promising technologies for reducing cadmium contamination in rice. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. Proceedings of the World Rice Research Conference held in Tokyo and Tsukuba, Japan, 4–7 November 2004. International Rice Research Institute, Los Baños (Philippines) and Japan International Research Center for Agricultural Sciences, Tsukuba (Japan). pp 381–384

    Google Scholar 

  • Jain AK, Suhas Jain S, Bhatnagar A (2003) Utilization of industrial wastes for the removal of anionic dyes. Toxicol Environ Chem 84:41–52

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2010) A quantitative review of the effects of biochar application to soils on crop productivity using meta- analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P et al (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596

    Article  CAS  Google Scholar 

  • Jindo K, Mizumoto H, Sawada Y et al (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621

    Article  Google Scholar 

  • Johnsena AR, Wickb LY et al (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Kang J (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  Google Scholar 

  • Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.) BMC Plant Biol 10:210

    Article  CAS  Google Scholar 

  • Karin O, Jonsson A, Stenstro J (2010) A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide degrading microorganisms. Biodegradation 21:21–29

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Heal Perspect 117:1823–1831

    Article  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Katayama A, Fujimura Y, Kuwatsuka S (1993) Microbial degradation of DDT at extremely low concentrations. J Pestic Sci 18:353–359

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of the herbicides atrazine and metalachlor by transgenic rice plants expressing human CYP1A1, CYP2B6 and CYP2C19. J Agric Food Chem 54:2985–2991

    Article  CAS  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    CAS  Google Scholar 

  • Khehra MS, Saini HS et al (2006) Biodegradation of azo dye C.I. Acid Red 88 by an anoxic aerobic sequential bioreactor. Dyes Pigments 70:1–7

    Article  CAS  Google Scholar 

  • Kim JS, Shea PJ, Yang JE, Kim JE (2007) Halide salts accelerate degradation of high explosives by zerovalent iron. Environ Pollut 147:634–641

    Article  CAS  Google Scholar 

  • Kimura Y, Okubo Y, Hayashida N et al (2015) Evaluation of the relationship between current internal 137Cs exposure in residents and soil contamination west of Chernobyl in Northern Ukraine. PLoS One 10(9):e0139007. doi:10.1371/journal.pone.0139007

    Article  CAS  Google Scholar 

  • Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380

    Article  CAS  Google Scholar 

  • Kirchhoff MM (2003) Promoting green engineering through green chemistry. Environ Sci Technol 37(23):5349–5353

    Article  CAS  Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2001) Remediation of metal and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restauration of metals-contaminated soils. CRC Press LLC, Boca Raton, pp 21–60

    Google Scholar 

  • Kuiper EL, Lagendijk GV, Lugtenberg B (2004) Rhizoremediation: A beneficial plant microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kumpiene J, Ore S, Renella G et al (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69

    Article  CAS  Google Scholar 

  • Kumpiene J, Montesinos IC, Lagerkvist A, Maurice C (2007) Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere 67(2):410–417

    Article  CAS  Google Scholar 

  • Kurtyka R, Małkowski E et al (2008) Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Pol J Environ Stud 17:51–56

    CAS  Google Scholar 

  • Kwon GS, Kim JE, Kim TK et al (2002) Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS Microbiol Lett 215:255–259

    Article  CAS  Google Scholar 

  • Lageman R, Pool W, Seffinga G (1990) Electro-reclamation: state-of-the-art and future developments. In: Arendt F, Hinsenveld M, Van Den Brink WJ (eds) Contaminated soil ’90. Springer, Dordrecht, pp 1071–1078

    Chapter  Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegrad 62(2):204–209

    Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2009) Biodegradation of chlorpyrifos in soil by enriched cultures. Curr Microbiol 58:35–38

    Google Scholar 

  • Lal K, Minhas PS, Shipra et al (2008) Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils. Bioresour Technol 99:1006–1011

    Article  CAS  Google Scholar 

  • Launen L, Pinto LJ, Wiebe C et al (1995) The oxidation of pyrene and benzo[a]pyrene by non-basidiomycete soil fungi. Can J Microbiol 41:477–488

    Article  CAS  Google Scholar 

  • Lee PH, Ong SK et al (2001) Use of solvents to enhance PAH biodegradation of coal tar. Water Res 35:3941–3949

    Article  CAS  Google Scholar 

  • Levi-Minzi R, Petruzzelli G (1984) The influence of phosphate fertilizers on Cd solubility in soil. Water Air Soil Pollut 23:423–429

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Siebielec G, Kerschner BA (2000) Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania. J Environ Qual 29:1440

    Article  CAS  Google Scholar 

  • Li H, Shi W, Shao H, Shao M (2009) The remediation of the lead-polluted garden soil by natural zeolite. J Hazard Mater 169:1106–1111

    Article  CAS  Google Scholar 

  • Liang L, Gu B, Yin X (1996) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Sci Technol 6:111–122

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Schulz KR, Skrentny RF, Stitt PA (1965) Insecticidal residues in cucumbers and alfalfa grown on aldrin- or heptachlor treated soils. J Econ Entomol 58:742–746

    Article  CAS  Google Scholar 

  • Liedekerke MV, Prokop G, Rabl-Berger S et al (2014) Progress in the management of contaminated sites in Europe. EUR 26376 – Joint Research Centre – Institute for Environment and Sustainability, European Commission. pp 1–68

    Google Scholar 

  • Liste HH, Alexander M (2000) Plant promoted pyrene degradation in soil. Chemosphere 40:7–10

    Article  CAS  Google Scholar 

  • Little C, Hepher MJ, El-Sharif M (2002) The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics 40:667–674

    Article  CAS  Google Scholar 

  • Liu RQ, Zhao DY (2007) In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876

    Article  CAS  Google Scholar 

  • Liu Y, Zhang J, Zhang Z (2004) Isolation and characterisation of polycyclic aromatic hydrocarbons- degrading Sphingomonas sp. Strain ZL5. Biodegradation 15:205–212

    Article  CAS  Google Scholar 

  • Loick N, Hobbs PJ, Hale MCD, Jones DL (2012) Bioremediation of poly-aromatic hyrdocarbon (PAH)-contaminated soil by composting. Crit Rev Environ Sci Technol 39(4):271–332

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Wieshammer G, Zhang G, McGrath SP (2002) In situ fixation of metals in soil using bauxite residue: biological effects. Environ Pollut 118:445–452

    Article  CAS  Google Scholar 

  • Lopez-Chuken UJ, Lopez-Domınguez U et al (2012) Implications of chloride-enhanced cadmium uptake in saline agriculture: modeling cadmium uptake by maize and tobacco. Int J Environ Sci Technol 9:69–77

    Article  CAS  Google Scholar 

  • Lothenbach B, Furrer G, Schulin R (1997) Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ Sci Technol 31:1452–1462

    Article  CAS  Google Scholar 

  • Lu H, Zhang YY, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862

    Article  CAS  Google Scholar 

  • Ludwig RD, Su C, Lee TR et al (2007) In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulphate and sodium dithionite: a field investigation. Int J Environ Sci Technol 41:5299–5305

    Article  CAS  Google Scholar 

  • Lundstedt S (2003) Analysis of PAHs and their transformation products in contaminated soil and remedial processes. Dissertation, Umea University, Umea, Sweden

    Google Scholar 

  • Lunney AI, Zeeb BA, Reimer KJ (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154

    Article  CAS  Google Scholar 

  • Luqueño FF, Marsch R et al (2008) Remediation of PAHs in a saline–alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Sci Total Environ 402:18–28

    Article  CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Madrid F, López R, Cabrera F (2007) Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agric Ecosyst Environ 119(3–4):249–256

    Article  CAS  Google Scholar 

  • MAFF (2002) Survey of the cadmium contained in agricultural products. Ministry of Agriculture, Forestry, and Fisheries, Gov. of Japan, pp 1–45

    Google Scholar 

  • Maillard J, Schumacher W, Vazquez F et al (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638

    Article  CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2, 4, 6-trinitrotoluene by vetiver grass – potential for phytoremediation? Environ Pollut 146:1–4

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B (2009) Concentrations, sources and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ 407:3746–3753

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, briefs in molecular science. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Martorell MM, Pajot HF, de Figueroa LIC (2012) Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria. Int Biodeter Biodegr 66:25–32

    Article  CAS  Google Scholar 

  • Matsumura F, Boush GM (1967) Dieldrin: degradation by soil microorganisms. Science 156:959–961

    Article  CAS  Google Scholar 

  • Matsumura F, Khanvilkar VG, Patil KC, Boush GM (1971) Metabolism of endrin by certain soil microorganisms. J Agric Food Chem 19:27–31

    Article  CAS  Google Scholar 

  • Mattina MJI, Eitzer BD, Iannucci-Berger W et al (2004) Plant uptake and translocation of highly weathered, soil bound technical chlordane residues: data from field and rhizotron studies. Environ Toxicol Chem 23:2756–2762

    Article  CAS  Google Scholar 

  • Maule A, Plyte S, Quirk AV (1987) Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pestic Biochem Physiol 27:229–236

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press Inc, New York

    Google Scholar 

  • McBride MB (1995) Toxic metal accumulation from agricultural use of sludge: are U.S. EPA regulations protective? J Environ Qual 24:5–18

    Article  CAS  Google Scholar 

  • McGrath SP, Chang AC, Page AL, Witter E (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ Rev 2:108–118

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  Google Scholar 

  • McGuinness M, Mazurkiewicz V, Brennan E, Dowling DN (2007) Dechlorination of pesticides by a specific bacterial glutathione S-transferase, BphKLB400: Potential for bioremediation. Eng Life Sci 7:611–615

    Article  CAS  Google Scholar 

  • McMullan G, Meehan C et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  Google Scholar 

  • Meers E, Slycken SV et al (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2002) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42

    Article  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  • Mello-Farias PC, Chaves ALS, Lencina CL (2011) Transgenic plants for enhanced phytoremediation – physiological studies, genetic transformation. In: Alvarez M (ed) InTech. doi:10.5772/24355, 2011. Available at: http://www.intechopen.com/books/genetic-transformation/transgenic-plants-for-enhanced-phytoremediation-physiological-studies, Accessed 18 Sept 2016

  • Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physico-chemical aspects and effiency of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: In Situ inactivation and phytorestoration. Springer, Heidelberg/New York

    Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61

    Article  CAS  Google Scholar 

  • Mikes O, Cupr P, Trapp S, Klanova J (2009) Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus). Environ Pollut 157(2):488–496

    Article  CAS  Google Scholar 

  • Miller CD, Hall K, Liang YN et al (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol 48:230–238

    Article  CAS  Google Scholar 

  • Miyata N, Iwahori K, Foght JM, Gray MR (2004) Saturable, energy dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol 70(1):363–369

    Article  CAS  Google Scholar 

  • Moody J, Freeman J, Doerge D, Cerniglia C (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. PYR-1. Appl Environ Microbiol 67(4):1476–1483

    Article  CAS  Google Scholar 

  • Muller I, Pluquet E (1998) Immobilization of heavy metals in sediment dredged from a seaport by iron bearing materials. Water Sci Technol 37:379–386

    Article  CAS  Google Scholar 

  • Musat F, Galushko A, Jacob J et al (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    Article  CAS  Google Scholar 

  • NAAS (2012) Sustaining agricultural productivity through integrated soil management. Policy Paper No. 56, National Academy of Agricultural Sciences, New Delhi

    Google Scholar 

  • Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55

    CAS  Google Scholar 

  • Nair DR, Burken JG, Licht LA, Schnoor JL (1993) Mineralization and uptake of triazine pesticide in soil-plant systems. J Environ Eng 119:842–854

    Article  CAS  Google Scholar 

  • Neumann D, Heuer A, Hemkemeyer M et al (2014) Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME J 8:1289–1300

    Article  CAS  Google Scholar 

  • Nigam P, Armour G et al (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226

    Article  CAS  Google Scholar 

  • Nigam R, Srivastava S et al (2001) Cadmium mobilization and plant availability – the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113

    Article  CAS  Google Scholar 

  • Nurzhanova A, Kulakow P, Rubin E et al (2010) Obsolete pesticides pollution and phytoremediation of contaminated soil in Kazakhstan. In: Kulakow PA, Pidlisnyuk VV (eds) Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, Dordrecht, pp 87–111

    Chapter  Google Scholar 

  • Oleszczuk P, Baran S (2003) Degradation of individual polycyclic aromatic hydrocarbons (PAHs) in soil polluted with aircraft fuel. Pol J Environ Stud 12:431–437

    CAS  Google Scholar 

  • Oliver DP, Schultz JE, Tiller KG, Merry RH (1993) The effect of crop rotations and tillage practices on cadmium concentration in wheat grain. Aust J Agric Res 44:1221–1234

    Article  Google Scholar 

  • Olson PE, Castro A et al (2008) Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J Environ Qual 37:1439–1446

    Article  CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26(1):27–38

    Google Scholar 

  • Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr 53:86–94

    Article  CAS  Google Scholar 

  • Page AL, Logan TJ et al (1987) Land application of sludge: Food chain implications. Lewis Publications, Chelsea

    Google Scholar 

  • Papafilippaki A, Paranychianakis N, Nikolaidis NP (2015) Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth. Sci Hortic-Amsterdam 195:195–205

    Article  Google Scholar 

  • Parrish Z, White J, Isleyen M et al (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618

    Article  CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Microbiol 19:879–881

    CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S et al (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Pereira CR, Camps-Arbestain M, Rodríguez Garrido B et al (2006) Behaviour of a-, b-, c-, and d-hexachlorocyclohexane in the soil–plant system of a contaminated site. Environ Pollut 144:210–217

    Article  CAS  Google Scholar 

  • Pigna M, Cozzolino V et al (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sediment Contam 7:467–480

    Article  CAS  Google Scholar 

  • Prasad MNV (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 259–274

    Chapter  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Geochem 14:989–1000

    Article  CAS  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo-dyes. Indian J Exp Biol 44:618–626

    CAS  Google Scholar 

  • Qing H, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Quilliam RS, Rangecroft S, Emmett BA et al (2013) Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 5:96–103

    Article  CAS  Google Scholar 

  • Quinn JJ, Negri CM et al (2001) Predicting the effect of deep-rooted hybrid poplars on the groundwater flow system at a large scale phytoremediation site. Int J Phytoremed 3:41–60

    Article  CAS  Google Scholar 

  • Rai UN, Pandey S, Sinha S et al (2004) Revegetating fly ash landfills with Prosopis juliflora L: impact of different amendments and Rhizobium inoculation. Environ Int 30:293–300

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Acevedo F et al (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162

    Article  CAS  Google Scholar 

  • Rayu S, Karpouzas D, Singh B (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23(6):917–926

    Article  CAS  Google Scholar 

  • Rehmann K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene Degradation by Mycobacterium Sp. Strain KR2. Chemosphere 36:2977–2992

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments – a perspective on mechanisms, consequences and assessment. Environ Pollut 108(1):103–112

    Article  CAS  Google Scholar 

  • Reilley KA, Banks MK et al (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219

    Article  CAS  Google Scholar 

  • Rhykerd RL, Crews B et al (1999) Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresour Technol 67:279–285

    Article  CAS  Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8:19–24

    Article  CAS  Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140:325–332

    Article  CAS  Google Scholar 

  • Riya P, Jagatpati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2:36–41

    Article  CAS  Google Scholar 

  • Roche H, Vollaire Y, Martin E et al (2009) Rice fields regulate organochlorine pesticides and PCBs in lagoons of the Nature Reserve of Camargue. Chemosphere 75:526–533

    Article  CAS  Google Scholar 

  • Rousseaux S, Hartmann A, Lagacherie B et al (2003) Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities. Chemosphere 51:569–576

    Article  CAS  Google Scholar 

  • Ruttens A, Boulet J et al (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207

    Article  Google Scholar 

  • Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22(1):77–83

    Article  CAS  Google Scholar 

  • Saha JK (2002) Role of farmyard manure in integrated nutrient management in Indian soils for sustainable crop production. In: Dris R, Abdelaziz FH, Jain M (eds) Plant nutrition: growth and diagnosis. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 277–288

    Google Scholar 

  • Saha JK (2005) Changes in salinity and sodicity of soils with continuous application of contaminated water near industrial area. J Indian Soc Soil Sci 53(4):612–617

    CAS  Google Scholar 

  • Saha JK, Adhikari T, Mandal B (1999) Effect of lime and organic matter on distribution of zinc, copper, iron, and manganese in acid soils. Commun Soil Sci Plant Anal 30:1819–1829

    Article  CAS  Google Scholar 

  • Saha JK, Panwar N et al (2010) An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag 30:192–201

    Article  CAS  Google Scholar 

  • Saha JK, Panwar N et al (2013) Risk assessment of heavy metals in soil of a susceptible agro-ecological system amended with municipal solid waste compost. J Indian Soc Soil Sci 61:15–22

    CAS  Google Scholar 

  • Saha JK, Sharma AK, Srivastava A (2014) Impact of different types of polluted irrigation water on soil fertility and wheat grain yield in clayey black soils of central India. Environ Monit Assess 186:2349–2356

    Article  CAS  Google Scholar 

  • Saiki Y, Habe H, Yuuki T et al (2003) Rhizoremediation of dioxin-like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a- dioxygenase constitutively. Biosci Biotechnol Biochem 67:1144–1148

    Article  CAS  Google Scholar 

  • Sanglard D, Leisola MSA, Fiechter A (1986) Role of extracellular liginases in biodegradation of benzo[a]pyrene by Phanerochaete chrysoporium. Enzym Microb Technol 8:209–212

    Article  CAS  Google Scholar 

  • Santodonato J, Howard P et al (1981) Health and ecological assessment of polynuclear aromatic hydrocarbons. J Environ Pathol Toxicol Oncol 5:1–364

    CAS  Google Scholar 

  • Saratale RG, Saratale GD et al (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Sayara T, Pognani M et al (2010) Anaerobic degradation of PAHs in soil: Impacts of concentration and amendment stability on the PAHs degradation and biogas production. Int Biodeterior Biodegrad 64:286–292

    Article  CAS  Google Scholar 

  • Schimmack W, Bunzl K, Zelles L (1989) Initial rates of migration of radionuclides from the Chernobyl fallout in undisturbed soils. Geoderma 44:211–218

    Article  CAS  Google Scholar 

  • Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediat 3(2):221–241

    Article  CAS  Google Scholar 

  • Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adjusta. Int Biodeter Biodegr 43:93–100

    Article  CAS  Google Scholar 

  • Scott C, Pandey G, Hartley CJ et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL et al (2004) Algal degradation of a known endocrine disrupting insecticide, a-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52(10):3030–3035

    Article  CAS  Google Scholar 

  • Shann JR, Boyle JJ (1994) Influence of plant species on in situ rhizosphere degradation. In: Anderson TA, Coats JR (eds) Bioremediation Through Rhizosphere Technology, ACS Symposium Series, American Chemical Society, Washington, DC 563:70–81

    Google Scholar 

  • Sharma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium Leclercia adecarboxylata. Appl Environ Microbiol 70(5):3163–3166

    Article  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z et al (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  Google Scholar 

  • Shu WS, Lan CY, Zhang ZQ, Wong MH (2000) Use of vetiver and other three grasses for revegetation of Pb/Zn mine tailings at Lechang, Guangdong Province: field Experiment. Second international vetiver conference, Bangkok, Thailand

    Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2003) Enrichment and isolation of endosulfan-degrading microorganisms. J Environ Qual 32:47–54

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    Article  CAS  Google Scholar 

  • Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22:845–857

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Singh OV, Labana S et al (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  CAS  Google Scholar 

  • Singh KP, Dinesh M, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 55:227–255

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their applications a soil amendment. Aust J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Singh V, Brar MS, Sharma P, Brar BS (2011) Distribution of arsenic in groundwater and surface soils in south western districts of Punjab. J Indian Soc Soil Sci 59:376–380

    Google Scholar 

  • Skaates SV, Ramaswami A, Anderson LG (2005) Transport and fate of dieldrin in poplar and willow trees analyzed by SPME. Chemosphere 61(1):85–91

    Article  CAS  Google Scholar 

  • Skłodowski P, Maciejewska A et al (2006) The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils. In: Twardowska I, Allen HE (eds) Soil and water pollution monitoring, protection and remediation. Springer, pp 3–23

    Google Scholar 

  • Smith DJT, Edelhauser EC, Harrison RM (1995) Polycyclic aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ Technol 16:45–53

    Article  CAS  Google Scholar 

  • Smreczak B, Maliszewska-Kordybach B (2003) Primary investigations into determination of potentially bioavailable fractions of PAHs in soils contaminated with those compounds. Arch Environ Prot 29(4):41–50

    CAS  Google Scholar 

  • Sparrow LA, Salardini AA et al (1994) Field studies of cadmium in potatoes (Solanum tuberosum L.). III. Response of cv. Russet Burbank to sources of banded potassium. Aust J Agric Res 45:243–249

    Article  CAS  Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64(9):3368–3375

    CAS  Google Scholar 

  • Su DC, Wong JWC (2004) Selection of mustard oilseed rape (Brassica juncea L.) for phytoremediation of cadmium contaminated soil. Bull Environ Contam Toxicol 72:991–998

    Article  CAS  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP et al (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    CAS  Google Scholar 

  • Sutherland JB, Fu PP, Yang SK et al (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59:2145–2149

    CAS  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • Tao S, Cui YH, Xu FL et al (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24

    Article  CAS  Google Scholar 

  • Tao S, Jiao XC, Chen SH et al (2006) Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage. Environ Pollut 140:13–15

    Article  CAS  Google Scholar 

  • Teng Y, Luo Y et al (2010) Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremedition 12:516–533

    Article  CAS  Google Scholar 

  • Tharakan J, Addagada A, Tomlinson D, Shafagati A (2004) Vermicomposting for the bioremediation of PCB congeners in SUPERFUND site media. In: Waste management and the environment II: International Conference on Waste Management and the Environment No. 2, Rhodes, pp 117–124

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils-a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Tomei MC, Daugulis AJ (2013) Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Rev Environ Sci Technol 43(20):2107–2139

    Article  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B-Environ 46(1):1–15

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM et al (2015) Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Truong PN, Baker D (1988) Vetiver grass system for environmental protection. Technol Bull No 1. Pacific Rim Vetiver Network. Office of the Royal Development Projects Board, Bangkok, Thailand

    Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476

    Article  CAS  Google Scholar 

  • Valentíın L, Lu-Chau TA, L´opez C et al (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysenein a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648

    Article  CAS  Google Scholar 

  • Valo R, Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • van Bohemen HD, van de Laak WHJ (2003) The influence of road infrastructure and traffic on soil, water, and air quality. Environ Manag 31(1):50–68

    Article  Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Metal contaminated soils: In situ inactivation and phytorestoration. Springer and R G Landes Company, Georgetown

    Google Scholar 

  • Vangronsveld J, Carleer R, Clijsters H (1994) Transfer of metals and metalloids from soil to man through vegetables cultivated in polluted gardens: risk assessment and methods from immobilizations of these elements in soils. In: Varnavas SP (ed) Environmental contamination. CEP Consultants, Edinburgh, pp 142–145

    Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vila J, Lopez Z, Sabate J et al (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  Google Scholar 

  • Vrkoslavova J, Demnerova K, Mackova M et al (2010) Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge. Chemosphere 81:381–386

    Article  CAS  Google Scholar 

  • Waghmode TR, Kurade MB, Govindwar SP (2011) Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. Int Biodeter Biodegr 65:479–486

    Article  CAS  Google Scholar 

  • Walker DJ, Clemente R et al (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    Article  CAS  Google Scholar 

  • Wang KR (2002) Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils. Acta Biotechnol 22:189–198

    Article  Google Scholar 

  • Wang Y, Oyaizu H (2009) Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. J Hazard Mater 168:760–764

    Article  CAS  Google Scholar 

  • Wang X, Gong Z, Li P, Zhang L, Hu X (2008) Degradation of pyrene and benzo[a]pyrene in contaminated soil by immobilized fungi. Environ Eng Sci 25:677–684

    Article  CAS  Google Scholar 

  • Weber WJ (1972) Physicochemical processes for water quality control. Wiley, New York, pp 34–36

    Google Scholar 

  • Wen Y, Ehsan S, Marshall WD (2012) Simultaneous mobilization of macro- and trace elements (MTEs) and polycyclic aromatic hydrocarbon (PAH) compounds from soil with a non-ionic surfactant and [S, S]-ethylenediamine-disuccinic acid (EDDS) in admixture: PAH compounds. J Hazard Mater 199–200:240–246

    Article  CAS  Google Scholar 

  • White JC, Parrish ZD, Isleyen M et al (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int J Phytorem 8:63–79

    Article  CAS  Google Scholar 

  • Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl - (PCB) contaminated soil. Sci Total Environ 374:1–12

    Article  CAS  Google Scholar 

  • Willaert G, Verloo M (1992) Effect of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil. Pedology 43:83–91

    Google Scholar 

  • Wunder T, Marr J, Kremer S et al (1997) 1-Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch Microbiol 167:310–316

    Article  CAS  Google Scholar 

  • Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302

    Article  CAS  Google Scholar 

  • Xu YH, Zhao DY (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Xu SY, Chen YX, Wu WX et al (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215

    Article  CAS  Google Scholar 

  • Xu SY, Chen YX, Lin KF et al (2009) Removal of pyrene from contaminated soils by white clover. Pedosphere 19:265–272

    Article  CAS  Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Degradation of polycyclic aromatic hydrocarbon by a newly isolated dibenzofuran utilizing Janibacter sp strain YY-1. Appl Microbiol Biotechnol 65:211–218

    Article  CAS  Google Scholar 

  • Yang Q, Yediler A, Yang M, Kettrup A (2005) Decolorization of an azo dye, reactive black 5 and MnP production by yeast isolate: debaryomyces polymorphus. Biochem Eng J 24:249–253

    Article  CAS  Google Scholar 

  • Yap CL, Gan S, Ng HK (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177(1–3):28–41

    Article  CAS  Google Scholar 

  • Ye WL, Khan MA, McGrath SP, Zhao FJ (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159:3739–3743

    Article  CAS  Google Scholar 

  • Yirsaw BD, Megharaj M, Chen Z, Naidu R (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98

    Article  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2007) Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 68:1050–1057

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang WX (2005) Nanotechnology for water purification and waste treatment. Frontiers in nanotechnology, U.S. EPA millennium lecture series. Available at http://www.epa.gov/ncer/nano/lectures/zhang0705.pdf. Accessed 14 Mar 2016

  • Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004a) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    Article  CAS  Google Scholar 

  • Zhang W, Wang H, Zhang R et al (2004b) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104

    Article  CAS  Google Scholar 

  • Zielinski M, Kahl S, Hecht HJ, Hofer B (2003) Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction. J Bacteriol 185:6976–6980

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Saha, J.K., Selladurai, R., Coumar, M.V., Dotaniya, M.L., Kundu, S., Patra, A.K. (2017). Remediation and Management of Polluted Sites. In: Soil Pollution - An Emerging Threat to Agriculture. Environmental Chemistry for a Sustainable World, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-4274-4_12

Download citation

Publish with us

Policies and ethics