Skip to main content

Application of Arbuscular Mycorrhizal Fungi into Agriculture

  • Chapter
  • First Online:

Abstract

In the natural ecosystem, rhizospheric soils have various biological organisms to favour the plant growth, nutrient absorption, stress tolerance, disease prevention, carbon capturing and many more. These organisms include mycorrhizal fungi, bacteria, actinomycetes, etc. which solubilize nutrients and assist the plants in uptaking by roots. Among them, arbuscular mycorrhizal (AM) fungi have key importance in natural ecosystem, but high rate of chemical fertilizer in agricultural fields is diminishing its importance. In this chapter, indigenous AM fungi efficiency is discussed with various doses of chemical fertilizer against number of cereal, cash, horticultural and fruit crops. Moreover, their effects on the plant growth, yield enhancement, fruit quality and soil quality are discussed. In the rhizosphere, AM fungi have main interaction with multipurpose bacteria such as phosphorus solubilizing bacteria, nitrogen fixers, plant growth-promoting rhizobacteria and stress tolerance bacteria. AM fungi contribute in building rhizospheric carbon stock, and, recently, addition of biochar in the soil for enhancing soil physicochemical properties and nutrient release has been studied with AM fungi. In order to manage the indigenous AM fungal spores, soil and crop management is important in association with carbon amendments for soils. One of the greatest challenges for the society is food insecurity, which should be changed into ‘food security’ by improving our knowledge and practicality to double the food production through sustainable farming approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullahi R, Lihan S, Edward R (2014) Isolation of indigenous arbuscular mycorrhizal fungi and selection of host plant for inoculum production. Int J Biosci 5:116–122

    Google Scholar 

  • Aliasgharzad N, Bolandnazar SA, Neyshabouri MR, Chaparzadeh N (2009) Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia 64:512–515. doi:10.2478/s11756-009-0072-0

    Article  Google Scholar 

  • Ansori A, Gholami A (2015) Improved nutrient uptake and growth of maize in response to inoculation with thiobacillus and mycorrhiza on an alkaline soil. Commun Soil Sci Plant Anal 46:2111–2126. doi:10.1080/00103624.2015.1048251

    Article  CAS  Google Scholar 

  • Aranda E, Scervino JM, Godoy P et al (2013) Role of arbuscular mycorrhizal fungus Rhizophagus Custos in the dissipation of PAHs under root-organ culture conditions. Environ Pollut 181:182–189. doi:10.1016/j.envpol.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  • Badda N, Yadav K, Aggarwal A et al (2015) Consortium effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth improvement of cotton (G. arboreum L.) J Nat Fibers 12:12–25. doi:10.1080/15440478.2013.879085

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R et al (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. doi:10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141. doi:10.1016/j.scienta.2015.03.002

    Article  Google Scholar 

  • Bettoni MM, Mogor ÁF, Pauletti V et al (2014) Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci Hortic 180:227–235. doi: http://dx.doi.org/10.1016/j.scienta.2014.10.037

    Article  CAS  Google Scholar 

  • Blackwell P, Joseph S, Munroe P et al (2015) Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25:686–695

    Article  Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA et al (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234. doi:10.1016/j.scitotenv.2016.05.178

    Article  PubMed  Google Scholar 

  • Cely MVT, de Oliveira AG, de Freitas VF et al (2016) Inoculant of arbuscular mycorrhizal fungi (Rhizophagus Clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:9. doi:10.3389/fmicb.2016.00720

    Article  Google Scholar 

  • Chandrasekaran M, Kim K, Krishnamoorthy R et al (2016) Mycorrhizal symbiotic efficiency on C-3 and C-4 plants under salinity stress - a meta-analysis. Front Microbiol 7:1246. doi:10.3389/fmicb.2016.01246

    Article  PubMed  PubMed Central  Google Scholar 

  • Charron G, Furlan V, Bernier-Cardou M et al (2001) Response of onion plants to arbuscular mycorrhizae. Mycorrhiza 11:187–197. doi:10.1007/s005720100121

    Article  CAS  Google Scholar 

  • Duan JF, Tian H, Drijber RA et al (2015) Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.) Plant Physiol Biochem 96:199–208. doi:10.1016/j.plaphy.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian acacia species. Mycorrhiza 13:85–91

    Article  CAS  PubMed  Google Scholar 

  • Frey Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Gastol M, Domagala-Swiatkiewicz I, Bijak M (2016) The effect of mycorrhizal inoculation and phosphorus application on the growth and mineral nutrient status of apple seedlings. J Plant Nutr 39:288–299. doi:10.1080/01904167.2015.1109114

    Article  CAS  Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Ingrid L, Sahraoui ALH, Frederic L et al (2016) Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: microcosm experiment on aged-contaminated soil. Environ Pollut 213:549–560. doi:10.1016/j.envpol.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Rezacova V, Smilauer P et al (2016) Root colonization of bait plants by indigenous arbuscular mycorrhizal fungal communities is not a suitable indicator of agricultural land-use legacy. Agric Ecosyst Environ 231:310–319. doi:10.1016/j.agee.2016.07.013

    Article  Google Scholar 

  • Karagiannidis N, Nikolaou N (1999) Arbuscular mycorrhizal root infection as an important factor of grapevine nutrition status. Multivariate analysis application for evaluation and characterization of the soil and leaf parameters. Agrochimica 43:151–165

    CAS  Google Scholar 

  • Kayama M, Yamanaka T (2014) Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus Salicina, and Castanopsis Cuspidata planted on acidic soil. Trees-Struct Funct 28:569–583. doi:10.1007/s00468-013-0973-y

    Article  CAS  Google Scholar 

  • Li XX, Zeng RS, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202. doi:10.1111/jipb.12434

    Article  PubMed  Google Scholar 

  • Lira-Saldivar RH, Hernandez A, Valdez LA et al (2014) Azospirillum brasilense and Glomus intraradices co-inoculation stimulates growth and yield of cherry tomato under shadehouse conditions. Phyton-Int J Exp Bot 83:133–138

    Google Scholar 

  • Liu SL, Guo XL, Feng G et al (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398:195–206. doi:10.1007/s11104-015-2656-5

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Maya MA, Ito M, Matsubara Y (2014) Tolerance to heat stress and anthracnose in mycorrhizal cyclamen. In: Chomchalow N, Supakamnerd N, Sukhvibul N (eds) International symposium on orchids and ornamental plants

    Google Scholar 

  • Moran RE (2014) Growth and yield of ‘Honeycrisp’ apple trees with preplant inoculation with mycorrhizae and soil-incorporated compost. J Am Pomol Soc 68:2–13

    Google Scholar 

  • Mostafavian SR, Pirdashti H, Ramzanpour MR et al (2008) Effect of mycorrhizae, thiobacillus and sulfur nutrition on the chemical composition of soybean [Glycine max (L.)] Merr. Seed. Pak J Biol Sci 11:826–835

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. doi:10.1016/j.biotechadv.2013.12.005

    Article  PubMed  Google Scholar 

  • Nicolas E, Maestre-Valero JF, Alarcon JJ et al (2015) Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. J Agric Sci 153:1084–1096. doi:10.1017/s002185961400080x

    Article  CAS  Google Scholar 

  • Oliveira RS, Rocha I, Ma Y et al (2016) Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.) J Toxicol Environ Health Part A 79:329–337. doi:10.1080/15287394.2016.1153448

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I et al (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887. doi:10.1016/S0038-0717(99)00119-4

    Article  CAS  Google Scholar 

  • Ortas I (2003) Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran plain in South Anatolia. J Plant Nutr 26:1–17. doi:10.1081/pln-120016494

    Article  CAS  Google Scholar 

  • Ortas I (2008) Field trials on mycorrhizal inoculation in the eastern mediterranean horticultural region. In: Feldmann F, Kapulnık Y, Baar J (eds) Mycorrhiza works. Hannover, Germany, pp 56–77

    Google Scholar 

  • Ortaş İ (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span J Agric Res 8(S1):116–122

    Article  Google Scholar 

  • Ortas I (2012a) Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake? J Plant Nutr 35:1639–1656. doi:10.1080/01904167.2012.698346

    Article  CAS  Google Scholar 

  • Ortas I (2012b) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Res 125:35–48. doi:10.1016/j.fcr.2011.08.005

    Article  Google Scholar 

  • Ortas I (2015) Comparative analyses of Turkey agricultural soils: potential communities of indigenous and exotic mycorrhiza species’ effect on maize (Zea mays L.) growth and nutrient uptakes. Eur J Soil Biol 69:79–87. doi:10.1016/j.ejsobi.2015.05.006

    Article  Google Scholar 

  • Ortas I, Akpinar C (2011) Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. J Plant Nutr 34:970–987. doi:10.1080/01904167.2011.555580

    Article  CAS  Google Scholar 

  • Ortas I, Coskan A (2016) Precipitation as the most affecting factor on soil-plant environment conditions affects the mycorrhizal spore numbers in three different ecological zones in Turkey. Acta Agric Scand Sect B Soil Plant Sci 66:369–378. doi:10.1080/09064710.2015.1132005

    Google Scholar 

  • Ortas I, Ustuner O (2014a) Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Sci Hortic 166:84–90. doi:10.1016/j.scienta.2013.12.014

    Article  CAS  Google Scholar 

  • Ortas I, Ustuner O (2014b) The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. Eur J Soil Biol 63:64–69. doi:10.1016/j.ejsobi.2014.05.007

    Article  Google Scholar 

  • Ortaş I, Varma A (2007) Field trials of bioinoculants. In: Varma A, Oelmuller R (eds) Advanced techniques in soil microbiology. Springer, Berlin, pp 397–413

    Google Scholar 

  • Ortas I, Kaya Z, Çakmak I (2001) Influence of VA-mycorrhiza inoculation on growth of maize and green pepper plants in phosphorus and zinc deficient soils. In: Horst WJ, Schenk MK, Burkert A et al (eds.) Plant nutrition: Food security and sustainability of agro-ecosystems through basic and applied research. Kluwer Academic Publishers, Dordrecht, pp 632–633

    Google Scholar 

  • Ortas I, Ortakci D, Kaya Z (2002a) Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Commun Soil Sci Plant Anal 33:259–272. doi:10.1081/css-120002392

    Article  CAS  Google Scholar 

  • Ortas I, Ortakci D, Kaya Z et al (2002b) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr 25:1263–1279. doi:10.1081/pln-120004387

    Article  CAS  Google Scholar 

  • Ortas I, Sari N, Akpinar C (2003) Effect of mycorrhizal inoculation and soil fumigation on the yield and nutrient uptake of some Solanaceas crops (tomato, eggplant and pepper) under field conditions. Agricoltura Mediterranea 133:249–258

    Google Scholar 

  • Ortas I, Sari N, Akpinar C et al (2011) Screening mycorrhizae species for increased growth and P and Zn uptake in eggplant (Solanum melongena L.) grown under greenhouse conditions. Eur J Hortic Sci 76:116–123

    CAS  Google Scholar 

  • Ortas I, Sari N, Akpinar C et al (2013) Selection of arbuscular mycorrhizal fungi species for tomato seedling growth, mycorrhizal dependency and nutrient uptake. Eur J Hortic Sci 78:209–218

    Google Scholar 

  • Ozdemir G, Akpinar C, Sabir A et al (2010) Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.) Eur J Hortic Sci 75:103–110

    Google Scholar 

  • Pandey R, Singh B, Nair TVR (2005) Impact of arbuscular-mycorrhizal fungi on phosphorus efficiency of wheat, rye, and triticale. J Plant Nutr 28:1867–1876. doi:10.1080/01904160500251381

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Opik M, Bonari E et al (2015) Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem 84:210–217. doi:10.1016/j.soilbio.2015.02.020

    Article  CAS  Google Scholar 

  • Revillini D, Gehring CA, Johnson NC (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems. Funct Ecol 30:1086–1098. doi:10.1111/1365-2435.12668

    Article  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Roy-Bolduc A, Hijri M (2012) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofert Biopest 2:104. doi:10.4172/2155-6202.1000104

    Google Scholar 

  • Shiferaw B, Smale M, Braun H-J et al (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5:291–317. doi:10.1007/s12571-013-0263-y

    Article  Google Scholar 

  • Şimşek D, Ortaş İ, Köse Ö et al (1998) The effect of mycorrhizal inoculation on growth and nutrient uptake of tomato, eggplant, pepper plants under field conditions. International symposium on arid region soils

    Google Scholar 

  • Sylvia DM, Chellemi DO (2001) Interactions among root-inhabiting fungi and their implications for biological control of root pathogens. Adv Agron 73:1–33

    Article  Google Scholar 

  • Vosátka M, Látr A, Gianinazzi S et al (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Article  Google Scholar 

  • Zai XM, Hao ZP, Wang H et al (2014) Arbuscular mycorrhizal fungi (AMF) on growth and nutrient uptake of beach plum (Prunus maritima) under salt stress. Appl Mech Mater 618:268–272

    Article  Google Scholar 

  • Zai XM, Zai Y, Zhang HS et al (2015) Characterising the rhizospheric soil niches of beach plum (Prunus maritima) colonised by arbuscular mycorrhizal fungi and/or phosphate-solubilising fungi when grown under NaCl stress. J Hortic Sci Biotechnol 90:469–475

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu TD et al (2010) Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress. Plant Signal Behav 5:591–593. doi:10.4161/psb.11498

    Article  PubMed  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS (2016) Glomalin: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297

    Article  CAS  Google Scholar 

  • Zwetsloot MJ, Lehmann J, Bauerle T et al (2016) Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 408:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ortaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ortaş, I., Rafique, M., Ahmed, İ.A.M. (2017). Application of Arbuscular Mycorrhizal Fungi into Agriculture. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_13

Download citation

Publish with us

Policies and ethics