Skip to main content

Role of Genetically Modified Microorganisms in Heavy Metal Bioremediation

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

Heavy metals are natural constituents of the earth’s crust. There is a significant alteration in the geochemical cycles and biological balance of these heavy metals due to various anthropogenic activities. These anthropogenic activities result in the release of bioavailable forms of various heavy metals such as mercury, lead, cadmium, nickel, copper, zinc, etc. into soil and aquatic environments. Prolonged exposures to these heavy elements lead to harmful health implications on different domains of terrestrial and aquatic life. Due to several limitations associated with physical and chemical methods for remediation of contaminated sites, bioremediation has been explored these days as an alternate technology for treatment of heavy metal pollution in soil and water. Various microorganisms such as bacteria and fungi along with plants play a vital role in biotransformation of these heavy metals into nontoxic forms, through processes such as bioremediation and phytoremediation, respectively. Recent progress in genetics has provided the driving force toward the use of engineering improved microbes and enzymes for bioremediation. Keeping these future remediation tolls in mind, present review investigated the abilities of wild microorganisms and plants in terms of tolerance and biotransformation of heavy metals along with their genetically engineered counterparts to explore these immense and valuable biological resources for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry bioavailability and risks of metals, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants: a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) Bioremediation, pp 539–544

    Google Scholar 

  • Barkay T, Turner R, Saouter E, Horn J (1992) Mercury bio-transformations and their potential for remediation of mercury contamination. Biodegradation 3:147–159

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance: from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  Google Scholar 

  • Bittsanszkya A, Kömives T, Gullner G, Gyulai G et al (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brodkin E, Copes R, Mattman A, Kennedy J (2007) Lead and mercury exposures: interpretation and action. Can Med Assoc J 176:59–63

    Article  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constitutes. In: Land treatment of hazardous wastes. Park Ridge Noyes data corp, London, pp 50–76

    Google Scholar 

  • Che D, Meagher RB, Heaton ACP, Lima A (2003) Expression of mercuric ion reductase in eastern cottonwood (Populus deltoids) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  Google Scholar 

  • Chen M, Ma LQ, Singh SP, Cao RX et al (2003) Field demonstration of in situ immobilization of soil Pb using P amendment. Adv Environ Res 8:93–102

    Article  CAS  Google Scholar 

  • Cho DH, Yoo MH, Kim EY (2004) Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol 14:250–255

    CAS  Google Scholar 

  • Chowdhury S, Bala NN, Dhauria P (2012) Bioremediation – a natural way for cleaner environment. Int J Pharm Chem Biol Sci 2:600–611

    Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thernoaceticum. Appl Environ Microbiol 59:7–14

    CAS  Google Scholar 

  • Danika L, Norman TL (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    Article  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  Google Scholar 

  • Deng X, Yi XE, Liu G (2007) Cadmium removal from aqueous solution by gene modified Escherichia coli JM109. J Hazard Mater 139:340–344

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J et al (2002) Engineering tolerance and hyper-accumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Doty SL (2007) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad Sci U S A 97:6287–6291

    Article  Google Scholar 

  • Drewniak L, Dziewit L, Ciezkowska M, Gawor J et al (2013) Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance. J. Biotechnol 164:479–488

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Eisler R (2004) Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol 180:133–165

    CAS  Google Scholar 

  • EPA (2007) Treatment Technologies for Site Cleanup: Annual Status Report; United States Environmental Protection Agency (EPA): Washington, DC, USA

    Google Scholar 

  • EPA (2008) Mercury human exposure. US Environmental Protection Agency

    Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. Emerg Med J 2:1

    Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Flora SJS (2002) Lead exposure: health effects, prevention and treatment. J Environ Biol 23:25–41

    CAS  Google Scholar 

  • Fowler BA (1998) Role of lead binding proteins in mediating lead bioavailability. Environ Health Perspect 106:1585–1587

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Garbarino JR, Hayes H, Roth D et al (2005) Contaminants in the Mississippi river. U. S. Geological Survey Circular, Virginia, U.S.A. 1133

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Porcess Environ Prt 3:58–66

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, Haro AD, Walker DJ (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 2:440–445

    Article  Google Scholar 

  • Graz M, Pawlikowska-PawlÄ™ga B, Jarosz-WilkoÅ‚azka A, (2011) Growth inhibition and intracellular distribution of Pb ions by the white-rot fungus Abortiporus biennis. Int. Biodeter. Biodegr 65:124–129

    Google Scholar 

  • Gullner G (2001) Enhanced tolerance of transgenic poplar plants over-expressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over-expressing GSHI and AsPCSI simultaneously increase the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Halim CE, Scott JA, Amal R, Short SA et al (2005) Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. J Hazard Mater 120:101–111

    Article  CAS  Google Scholar 

  • Holmes P, James KAF, Levy LS (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408:171–182

    Article  CAS  Google Scholar 

  • Huang CC, Chen MW, Hsieh JL, Lin WH et al (2006a) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72:197–205

    Article  CAS  Google Scholar 

  • Huang D, Zeng G, Jiang X, Feng C et al (2006b) Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J Hazard Mater 134:268–276

    Article  CAS  Google Scholar 

  • Hussein H, Krull R, Abou El-Ela SI, Hempel DC (2001) Interaction of the different heavy metal ions with immobilized bacterial culture degrading xenobiotic wastewater compounds. In: Proceedings of the Second International Water Association World Water Conference, Berlin, Germany. pp. 15–19

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (1993) Cadmium and certain cadmium compounds. In: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. IARC monograph 58. Lyon, France: World Health Organization. International Agency for Research on Cancer, 119–237

    Google Scholar 

  • Jackson WJ (1982) Summers AO: biochemical characterization of HgCl2- inducible polypeptides encoded by the mer operon of plasmid R 100. J Bacteriol 151:962–970

    CAS  Google Scholar 

  • Johansson M (2002) A review of risks associated to arsenic, cadmium, lead, mercury and zinc. The market implication of integrated management for heavy metals flows for bioenergy use in the European Union, Kalmar University, Department of biology and environmental Science, Sweden. p115

    Google Scholar 

  • Kang SH, Singh S, Kim YJ et al (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73(19):6317–6320

    Article  CAS  Google Scholar 

  • Kim SK, Lee BS, Wilson DB, Kim EK (2005) Selective cadmium accumulation using recombinant Escherichia coli. J Biosci Bioeng 99:109–114

    Article  CAS  Google Scholar 

  • Koplan JP (1999) Toxicological profile for cadmium, published by ATSDR, U.S. Department of health and human services p 439

    Google Scholar 

  • Kumar A, Cameotra SS, Gupta S (2012) Screening and characterization of potential cadmium biosorbent Alcaligenes strain from industrial effluent. J Basic Microbiol 52:160–166

    Article  CAS  Google Scholar 

  • Laddaga RA, Chu L, Misra TK, Silver S (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci 84:5106–5110

    Article  CAS  Google Scholar 

  • Lam TV, Agovino P, Niu X, Roche L (2007) Linkage study of cancer risk among lead exposed workers in New Jersey. Sci Total Environ 372:455–462

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Lenntech R (2004) Lenntech Water Treatment and Air Purification. Water Treatment. (http://www.excelwater.com/thp/filters/Water-Purification.htm)

  • Leonard A (1991) Arsenic. In: Merian E (ed) Mineral and their compounds in the environment: occurrence, analysis and biological relevance, 2nd ed. VCH, Weinheim, pp 751–773

    Google Scholar 

  • Li P, Feng XB, Qiu GL, Shang LH (2009) Mercury pollution in Asia: a review of the contaminated sites. J Mater 168:591–601

    CAS  Google Scholar 

  • Lim PE, Mak KY, Mohamed N, Noor AM (2003) Removal and speciation of heavy metals along the treatment path of wastewater in subsurface-flow constructed wetlands. Water Sci Technol 48:307–313

    CAS  Google Scholar 

  • Liu SX, Athar M, Lippai I, Charles W et al (2000) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. PNAS 98:1643–1648

    Article  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M (2011) Genetic and molecular aspects of metal tolerance and hyperaccumulation. Metal Tox Plants:41–61

    Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mazumder DN, De BK, Santra A, Gupta JD et al (1999) Chronic arsenic toxicity, epidemiology, natural history and treatment. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier Science, New York, pp 335–347

    Chapter  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Mello-Farias PC, Chaves ALS (2008) Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Tiznado-Hernandez ME, Troncoso-Rojas R, RiveraDomĂ­nguez MA (eds) Transgenic approach in plant biochemistry and physiology. Research Signpost, Kerala, pp 253–266

    Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis. Environ Toxicol 22:368–374

    Article  CAS  Google Scholar 

  • Munawar S, Susann V, Kamrun Z, Christine SA (2012) New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194:623–635

    Article  Google Scholar 

  • Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    Article  CAS  Google Scholar 

  • National Academy of Science (1977) Arsenic. Author, Washington, DC

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Ow DW (1996) Heavy metal tolerance genes-prospective tools for bioremediation. Resour Conserv Recycl 18:135–149

    Article  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063

    Article  CAS  Google Scholar 

  • Patel J, Zhang Q, McKay LMR, Vincent R (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160:232–243

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang GJ et al (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2002) Phytoremediation of toxic metals using plants to clean the environment. John Wiley & Sons, New York, p 304

    Google Scholar 

  • Saberi M, Tavali A, Jafari M, Heidari M (2010) The effect of different levels of heavy metals on seed germination and seedling growth of Atriplex lentiformis. J Range Manag 4:112–120

    Google Scholar 

  • Salonen JT, Seppanen K, Nyyssonen K, Korpela H et al (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91:645–655

    Article  CAS  Google Scholar 

  • Santra A, Maiti A, Das S, Lahiri S et al (2000) Hepatic damage caused by chronic arsenic toxicity in experimental animals. Clin Toxicol 38:395–405

    CAS  Google Scholar 

  • Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health Perspect 112:1099–1103

    Article  CAS  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C et al (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  Google Scholar 

  • Selvi MS, Sasikumar S, Gomathi S, Rajkumar P et al (2014) Isolation and characterization of arsenic resistant bacteria from agricultural soil, and their potential for arsenic bioremediation. Int J Agric Policy Res 2:393–405

    Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2:202–213

    Google Scholar 

  • Singh BK (2011) Emerging and genomic approaches in bioremediation. In proceedings of the 4th international contaminated site remediation conference, Adelaide, Australia, 11–15

    Google Scholar 

  • Sinha A, Khare SK (2012) Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation 71:1–10

    CAS  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ et al (2002) Hydro-geochemistry of arsenic and other inorganic constituents in ground-waters from La Pampa. Argentina Appl Geochem 17:259–284

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M et al (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:179–796

    Article  Google Scholar 

  • Streets DG, Zang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988

    Article  CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588

    CAS  Google Scholar 

  • Titus JA, Pfister RM (1984) Bacteria and cadmium interactions in natural and laboratory model aquatic systems. Arch Environ Contam Toxicol 13:271–277

    Article  CAS  Google Scholar 

  • Tong S, Schirnding V, Prapamontol YE (2000) Environmental lead exposure: a public health problem of global dimensions. Bullet. World Health Org 78:1068–1077

    CAS  Google Scholar 

  • Turpeinen R, Kallio MP, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci. Total Environ 285:133–145

    Article  CAS  Google Scholar 

  • UNEP (2003) Global mercury assessment. United Nations Environment Programme, Geneva

    Google Scholar 

  • Utsunamyia T (1980) Japanese patent application no. pp- 55-72959

    Google Scholar 

  • Vadkertiova R, Slavikova E (2006) Metal tolerance of yeasts isolated from water. J Basic Microbiol 46:145–152

    Article  CAS  Google Scholar 

  • Valls M, Lorenzo VD (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  Google Scholar 

  • Valls M, Atrian S, Lorenzo V, FernadĂ©z LA (2000) Engineering a mouse metallothionein on the surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  CAS  Google Scholar 

  • Wagner-Dobler I, Lunsdorf H, Lubbenhausen T, Von C et al (2000) Structure and species composition of mercury reducing biofilms. Appl Environ Microbiol 66:4559–4563

    Article  CAS  Google Scholar 

  • Wang Y, Moore M, Levinson HS, Silver S (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. With broad-spectrum mercury resistance. J Bacteriol 171:83–92

    Article  CAS  Google Scholar 

  • Watt GCM, Britton A, Gilmour HG, Moore MR et al (2000) Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water leads levels. Food Chem Toxicol 38:73–79

    Article  Google Scholar 

  • Weiss B, Clarkson TW, Simon W (2002) Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110:851–856

    Article  CAS  Google Scholar 

  • WHO (1992) Cadmium—environmental aspects (environmental health criteria 135). World Health Organization, Geneva

    Google Scholar 

  • WHO (2008) Guideline for drinking water quality recommendations, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Xu C, Rosen BP (1997) Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. J Biol Chem 272:15734–15738

    Article  CAS  Google Scholar 

  • Yang CXL (2010) Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability. J Environ Sci Health Tox Hazd Subst Environ Eng 45:732–737

    Article  Google Scholar 

  • Young RA (2005) Toxicity Profiles: Toxicity Summary for Cadmium, Risk Assessment Information System, RAIS, University of Tennessee (http://www.rais.ornl.gov/tox/profiles/cadmium.shtml)

  • Yuan CG, Lu XF, Qin J, Rosen BP et al (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  CAS  Google Scholar 

  • Zaki S, Farag S (2010) Isolation and molecular characterization of some copper biosorped strains. Int J Environ Sci Technol 7:553–560

    Article  CAS  Google Scholar 

  • Zeng X, Tang J, Jiang P, Liu H et al (2010) Isolation, characterization and extraction of mer gene of Hg2+ resisting strain D2. Trans Nonferrous Met Soc 20(507):512

    Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zhu YL, Smitis EAHP, Jouanin L, Terry N (1999) Over-expression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zynda T (2001) Fact, Michigan State University TAB Program

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gupta, S., Singh, D. (2017). Role of Genetically Modified Microorganisms in Heavy Metal Bioremediation. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_12

Download citation

Publish with us

Policies and ethics